fast-pyairbyte

fast-pyairbyte

fast-pyairbyte lets you create a data pipeline in code ,from any Airbyte connector, with a single prompt.

Category
访问服务器

README

Fast PyAirbyte

Fast-PyAirbyte lets you generate a data pipeline as code, for any Airbyte Connector, using a single prompt:

"create a data pipeline from source-xxx to destination-xxx"

One click install

Add fast-pyairbyte MCP server to Cursor

If the button above doesn't work, copy and paste this link into your browser:

cursor://anysphere.cursor-deeplink/mcp/install?name=fast-pyairbyte&config=eyJjb21tYW5kIjoibnB4IiwiYXJncyI6WyJmYXN0LXB5YWlyYnl0ZSJdLCJlbnYiOnsiT1BFTkFJX0FQSV9LRVkiOiJ5b3VyLW9wZW5haS1hcGkta2V5LWhlcmUifX0=

Or install manually using the instructions below.

Manual Installation

The easiest way to get started is using npx to run the MCP server directly:

npx fast-pyairbyte

This will:

  1. Download and install the package automatically
  2. Check for Python and install dependencies
  3. Start the MCP server locally
  4. Display configuration instructions

What is Fast PyAirbyte?

Fast-PyAirbyte lets you generate a data pipeline as code, for any Airbyte Connector, using a single prompt:

"create a data pipeline from source-xxx to destination-xxx"

It leverages OpenAI and connector documentation to help users quickly scaffold and configure data pipelines between sources and destinations supported by Airbyte. The MCP server automates code generation, provides context-aware guidance, and streamlines the process of building and deploying data pipelines.

  • Generates PyAirbyte pipeline code based on user instructions and connector documentation
  • Uses OpenAI and file search to provide context-aware code and instructions
  • Available as an npm package that can be executed via npx
  • Easy installation with no local setup required

MCP Configuration

Add this to your MCP configuration file:

For Cursor (.cursor/mcp.json):

{
  "mcpServers": {
    "fast-pyairbyte": {
      "command": "npx",
      "args": ["fast-pyairbyte"],
      "env": {
        "OPENAI_API_KEY": "your-openai-api-key-here"
      }
    }
  }
}

For Claude Desktop (~/.config/claude/claude_desktop_config.json):

{
  "mcpServers": {
    "fast-pyairbyte": {
      "command": "npx",
      "args": ["fast-pyairbyte"],
      "env": {
        "OPENAI_API_KEY": "your-openai-api-key-here"
      }
    }
  }
}

For Cline (~/.config/cline/mcp_settings.json):

{
  "mcpServers": {
    "fast-pyairbyte": {
      "command": "npx",
      "args": ["fast-pyairbyte"],
      "env": {
        "OPENAI_API_KEY": "your-openai-api-key-here"
      }
    }
  }
}

Requirements:

  • Your own OpenAI API key from OpenAI Platform
  • Python 3.7+ installed on your system
  • Node.js 14+ for npx execution

Configuration Steps:

  1. Get your OpenAI API key from OpenAI Platform
  2. Create or edit your MCP configuration file
  3. Add the configuration above with your actual OpenAI API key
  4. Restart your MCP client (Cursor/Claude/Cline)
  5. Start generating PyAirbyte pipelines!

Usage

Once configured, you can use the MCP server in your AI assistant by asking it to generate PyAirbyte pipelines.

🚀 How to Use

1. Verify Connection

  • Look for the MCP server status in your client's interface
  • You should see "fast-pyairbyte" listed with 1 tool available
  • If it shows 0 tools or is red, check your configuration

2. Generate Pipelines with Natural Language

Simply ask your AI assistant to generate a PyAirbyte pipeline! Here are example prompts:

Basic Examples:

Generate a PyAirbyte pipeline from source-postgres to destination-snowflake
Create a pipeline to move data from source-github to dataframe
Build a PyAirbyte script for source-stripe to destination-bigquery
Generate a data pipeline from source-salesforce to destination-postgres
Create a pipeline that reads from source-github to a dataframe, and then visualize the results using Streamlit
Help me set up a data pipeline from source-salesforce to destination-postgres

3. Available Source/Destination Options

  • Sources: Any Airbyte source connector (e.g., source-postgres, source-github, source-stripe, source-mysql, source-salesforce)
  • Destinations: Any Airbyte destination connector (e.g., destination-snowflake, destination-bigquery, destination-postgres) OR dataframe for Pandas analysis

4. Pro Tips

  • Use "dataframe" as destination if you want to analyze data in Python/Pandas
  • Be specific about your source and destination names (use official Airbyte connector names with source- or destination- prefixes)
  • Ask follow-up questions if you need help with specific configuration or setup

The tool will automatically use your OpenAI API key (configured in the MCP settings) to generate enhanced, well-documented pipeline code with best practices and detailed setup instructions!


Features

  • Automated Code Generation: Creates complete PyAirbyte pipeline scripts
  • Configuration Management: Handles environment variables and credentials securely
  • Documentation Integration: Uses OpenAI to provide context-aware instructions
  • Multiple Output Formats: Supports both destination connectors and DataFrame output
  • Best Practices: Includes error handling, logging, and proper project structure
  • 600+ Connectors: If it's in the Airbyte Connector Registry, the MCP server can create pipelines for it
  • Easy Installation: No local setup required - just use npx
  • Cross-Platform: Works on macOS, Linux, and Windows

Available Tools

fast_pyairbyte

Creates a complete data pipeline using PyAirbyte and fast-pyairbyte to extract, transform, and load data between sources and destinations.

Parameters:

  • source_name: The official Airbyte source connector name (e.g., 'source-postgres', 'source-github')
  • destination_name: The official Airbyte destination connector name (e.g., 'destination-postgres', 'destination-snowflake') OR 'dataframe' to output to Pandas DataFrames

Returns:

  • Complete Python pipeline code
  • Setup and installation instructions
  • Environment variable templates
  • Best practices and usage guidelines

Development

Local Development

If you want to contribute or modify the server:

  1. Clone the repository:

    git clone https://github.com/quintonwall/fast-pyairbyte.git
    cd fast-pyairbyte
    
  2. Install dependencies:

    npm install
    
  3. Test locally:

    npm start
    

Project Structure

fast-pyairbyte/
├── package.json              # npm package configuration
├── bin/
│   └── fast-pyairbyte.js     # Node.js launcher script
├── python/
│   ├── main.py               # Python MCP server
│   ├── telemetry.py          # Usage analytics
│   └── requirements.txt      # Python dependencies
├── README.md                 # This file
└── docs/                     # Documentation

Publishing

To publish a new version to npm:

npm version patch  # or minor/major
npm config set strict-ssl false
npm publish

Security & Privacy

  • API Key Security: OpenAI API keys are passed securely through MCP environment variables
  • No Data Storage: The server doesn't store any user data or credentials
  • Anonymous Telemetry: Basic usage analytics are collected (can be disabled with DO_NOT_TRACK=1)
  • Open Source: Full source code is available for inspection

Troubleshooting

Common Issues

  1. "Python not found" error

    • Install Python 3.7+ from python.org
    • Ensure Python is in your system PATH
  2. "Dependencies failed to install" error

    • Check your internet connection
    • Try running pip install --upgrade pip first
  3. "OpenAI API key not found" error

    • Verify your API key is correctly set in the MCP configuration
    • Check that you're using a valid OpenAI API key
  4. MCP server shows 0 tools

    • Check the MCP configuration file syntax
    • Restart your MCP client after configuration changes
    • Check the server logs for error messages

Getting Help


License

MIT License - see LICENSE file for details.


Contributing

Contributions are welcome! Please read our contributing guidelines and submit pull requests to help improve the PyAirbyte MCP Server.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选