FastAPI + FastMCP + Gemini Integration

FastAPI + FastMCP + Gemini Integration

Enables natural language interaction with FastAPI applications through Google's Gemini AI using MCP tools. Provides CRUD operations for user management and application health monitoring through conversational prompts.

Category
访问服务器

README

FastAPI + FastMCP + Gemini Integration

A complete demonstration of integrating FastAPI with Google's Gemini AI through the Model Context Protocol (MCP) using FastMCP.

🎥 Demo Video

Watch the complete demonstration: Fast MCP.mp4

This video shows the full integration in action, including FastAPI startup, MCP tools testing, and Gemini AI interactions.

🚀 Quick Start

1. Install Dependencies

pip install -r requirements.txt

2. Set Up Gemini API Key

Create a .env file in the project root:

GEMINI_API_KEY=your-gemini-api-key-here

Get your API key from Google AI Studio.

3. Start FastAPI

python start_fastapi.py

4. Test the Integration

# Test MCP tools directly
python test_mcp_cli.py

# Test Gemini integration
python gemini_integration.py

# Run complete demo
python demo.py

📁 Project Structure

FASTMCP/
├── main.py                 # FastAPI application
├── mcp_server.py          # FastMCP server with tools
├── gemini_integration.py  # Gemini SDK integration
├── test_mcp_cli.py        # CLI testing script
├── demo.py                # Complete demonstration
├── start_fastapi.py       # FastAPI startup script
├── requirements.txt       # Dependencies
└── README.md             # This file

🛠️ Core Components

FastAPI Application (main.py)

  • RESTful API with user management (CRUD operations)
  • Health check endpoint
  • Auto-generated documentation at /docs

FastMCP Server (mcp_server.py)

Provides 7 MCP tools for API interaction:

  • get_all_users() - Retrieve all users
  • get_user_by_id(user_id) - Get specific user
  • create_user(name, email, age) - Create new user
  • update_user(user_id, name, email, age) - Update user
  • delete_user(user_id) - Delete user
  • get_health_status() - Check app health
  • get_app_info() - Get app information

Gemini Integration (gemini_integration.py)

  • Direct integration with Google's Gemini API
  • Natural language interface for MCP tools
  • Automatic tool selection based on prompts

🤖 How It Works

  1. FastAPI provides a RESTful API for user management
  2. FastMCP creates an MCP server that exposes API functions as tools
  3. Gemini can call these tools automatically based on natural language prompts

Example Gemini Interactions

"Get all users from the FastAPI application"
→ Gemini calls get_all_users() and formats the response

"Create a new user named Alice with email alice@example.com and age 28"
→ Gemini calls create_user() with the specified parameters

"What is the health status of the application?"
→ Gemini calls get_health_status() and reports the status

🔧 API Endpoints

Method Endpoint Description
GET / Welcome message
GET /users List all users
GET /users/{id} Get user by ID
POST /users Create user
PUT /users/{id} Update user
DELETE /users/{id} Delete user
GET /health Health check

🧪 Testing

Test FastAPI Endpoints

# Get all users
python -c "import requests; print(requests.get('http://localhost:8000/users').json())"

# Health check
python -c "import requests; print(requests.get('http://localhost:8000/health').json())"

Test MCP Tools

python test_mcp_cli.py

Test Gemini Integration

python gemini_integration.py

🔑 Environment Variables

Variable Description Required
GEMINI_API_KEY Google Gemini API key For Gemini integration

📚 Key Features

  • Natural Language Interface - Ask questions in plain English
  • Automatic Tool Selection - Gemini chooses appropriate MCP tools
  • Real-time API Interaction - Direct communication with FastAPI
  • Complete CRUD Operations - Full user management capabilities
  • Error Handling - Comprehensive error management
  • Cross-platform Support - Works on Windows, macOS, Linux

🐛 Troubleshooting

FastAPI Not Starting

  • Check if port 8000 is available
  • Ensure all dependencies are installed
  • Run: uvicorn main:app --reload

MCP Tools Not Working

  • Verify FastAPI is running on http://localhost:8000
  • Check MCP server script for errors

Gemini Integration Issues

  • Verify GEMINI_API_KEY is set correctly in .env file
  • Check API quota and permissions
  • Ensure google-genai package is installed

🔗 Learn More

📄 License

This project is open source and available under the MIT License.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选