FastAPI + FastMCP + Gemini Integration
Enables natural language interaction with FastAPI applications through Google's Gemini AI using MCP tools. Provides CRUD operations for user management and application health monitoring through conversational prompts.
README
FastAPI + FastMCP + Gemini Integration
A complete demonstration of integrating FastAPI with Google's Gemini AI through the Model Context Protocol (MCP) using FastMCP.
🎥 Demo Video
Watch the complete demonstration: Fast MCP.mp4
This video shows the full integration in action, including FastAPI startup, MCP tools testing, and Gemini AI interactions.
🚀 Quick Start
1. Install Dependencies
pip install -r requirements.txt
2. Set Up Gemini API Key
Create a .env file in the project root:
GEMINI_API_KEY=your-gemini-api-key-here
Get your API key from Google AI Studio.
3. Start FastAPI
python start_fastapi.py
4. Test the Integration
# Test MCP tools directly
python test_mcp_cli.py
# Test Gemini integration
python gemini_integration.py
# Run complete demo
python demo.py
📁 Project Structure
FASTMCP/
├── main.py # FastAPI application
├── mcp_server.py # FastMCP server with tools
├── gemini_integration.py # Gemini SDK integration
├── test_mcp_cli.py # CLI testing script
├── demo.py # Complete demonstration
├── start_fastapi.py # FastAPI startup script
├── requirements.txt # Dependencies
└── README.md # This file
🛠️ Core Components
FastAPI Application (main.py)
- RESTful API with user management (CRUD operations)
- Health check endpoint
- Auto-generated documentation at
/docs
FastMCP Server (mcp_server.py)
Provides 7 MCP tools for API interaction:
get_all_users()- Retrieve all usersget_user_by_id(user_id)- Get specific usercreate_user(name, email, age)- Create new userupdate_user(user_id, name, email, age)- Update userdelete_user(user_id)- Delete userget_health_status()- Check app healthget_app_info()- Get app information
Gemini Integration (gemini_integration.py)
- Direct integration with Google's Gemini API
- Natural language interface for MCP tools
- Automatic tool selection based on prompts
🤖 How It Works
- FastAPI provides a RESTful API for user management
- FastMCP creates an MCP server that exposes API functions as tools
- Gemini can call these tools automatically based on natural language prompts
Example Gemini Interactions
"Get all users from the FastAPI application"
→ Gemini calls get_all_users() and formats the response
"Create a new user named Alice with email alice@example.com and age 28"
→ Gemini calls create_user() with the specified parameters
"What is the health status of the application?"
→ Gemini calls get_health_status() and reports the status
🔧 API Endpoints
| Method | Endpoint | Description |
|---|---|---|
| GET | / |
Welcome message |
| GET | /users |
List all users |
| GET | /users/{id} |
Get user by ID |
| POST | /users |
Create user |
| PUT | /users/{id} |
Update user |
| DELETE | /users/{id} |
Delete user |
| GET | /health |
Health check |
🧪 Testing
Test FastAPI Endpoints
# Get all users
python -c "import requests; print(requests.get('http://localhost:8000/users').json())"
# Health check
python -c "import requests; print(requests.get('http://localhost:8000/health').json())"
Test MCP Tools
python test_mcp_cli.py
Test Gemini Integration
python gemini_integration.py
🔑 Environment Variables
| Variable | Description | Required |
|---|---|---|
GEMINI_API_KEY |
Google Gemini API key | For Gemini integration |
📚 Key Features
- ✅ Natural Language Interface - Ask questions in plain English
- ✅ Automatic Tool Selection - Gemini chooses appropriate MCP tools
- ✅ Real-time API Interaction - Direct communication with FastAPI
- ✅ Complete CRUD Operations - Full user management capabilities
- ✅ Error Handling - Comprehensive error management
- ✅ Cross-platform Support - Works on Windows, macOS, Linux
🐛 Troubleshooting
FastAPI Not Starting
- Check if port 8000 is available
- Ensure all dependencies are installed
- Run:
uvicorn main:app --reload
MCP Tools Not Working
- Verify FastAPI is running on http://localhost:8000
- Check MCP server script for errors
Gemini Integration Issues
- Verify
GEMINI_API_KEYis set correctly in.envfile - Check API quota and permissions
- Ensure google-genai package is installed
🔗 Learn More
📄 License
This project is open source and available under the MIT License.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。