FastAPI-MCP

FastAPI-MCP

Exposes FastAPI endpoints as Model Context Protocol (MCP) tools while preserving existing authentication, schemas, and documentation. It enables seamless integration of FastAPI services into MCP ecosystems using a native ASGI transport layer.

Category
访问服务器

README

<p align="center"><a href="https://github.com/tadata-org/fastapi_mcp"><img src="https://github.com/user-attachments/assets/7e44e98b-a0ba-4aff-a68a-4ffee3a6189c" alt="fastapi-to-mcp" height=100/></a></p>

<div align="center"> <span style="font-size: 0.85em; font-weight: normal;">Built by <a href="https://tadata.com">Tadata</a></span> </div>

<h1 align="center"> FastAPI-MCP </h1>

<div align="center"> <a href="https://trendshift.io/repositories/14064" target="_blank"><img src="https://trendshift.io/api/badge/repositories/14064" alt="tadata-org%2Ffastapi_mcp | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a> </div>

<p align="center">Expose your FastAPI endpoints as Model Context Protocol (MCP) tools, with Auth!</p> <div align="center">

PyPI version Python Versions FastAPI CI Coverage

</div>

<p align="center"><a href="https://github.com/tadata-org/fastapi_mcp"><img src="https://github.com/user-attachments/assets/b205adc6-28c0-4e3c-a68b-9c1a80eb7d0c" alt="fastapi-mcp-usage" height="400"/></a></p>

Features

  • Authentication built in, using your existing FastAPI dependencies!

  • FastAPI-native: Not just another OpenAPI -> MCP converter

  • Zero/Minimal configuration required - just point it at your FastAPI app and it works

  • Preserving schemas of your request models and response models

  • Preserve documentation of all your endpoints, just as it is in Swagger

  • Flexible deployment - Mount your MCP server to the same app, or deploy separately

  • ASGI transport - Uses FastAPI's ASGI interface directly for efficient communication

Hosted Solution

If you prefer a managed hosted solution check out tadata.com.

Installation

We recommend using uv, a fast Python package installer:

uv add fastapi-mcp

Alternatively, you can install with pip:

pip install fastapi-mcp

Basic Usage

The simplest way to use FastAPI-MCP is to add an MCP server directly to your FastAPI application:

from fastapi import FastAPI
from fastapi_mcp import FastApiMCP

app = FastAPI()

mcp = FastApiMCP(app)

# Mount the MCP server directly to your FastAPI app
mcp.mount()

That's it! Your auto-generated MCP server is now available at https://app.base.url/mcp.

Documentation, Examples and Advanced Usage

FastAPI-MCP provides comprehensive documentation. Additionaly, check out the examples directory for code samples demonstrating these features in action.

FastAPI-first Approach

FastAPI-MCP is designed as a native extension of FastAPI, not just a converter that generates MCP tools from your API. This approach offers several key advantages:

  • Native dependencies: Secure your MCP endpoints using familiar FastAPI Depends() for authentication and authorization

  • ASGI transport: Communicates directly with your FastAPI app using its ASGI interface, eliminating the need for HTTP calls from the MCP to your API

  • Unified infrastructure: Your FastAPI app doesn't need to run separately from the MCP server (though separate deployment is also supported)

This design philosophy ensures minimum friction when adding MCP capabilities to your existing FastAPI services.

Development and Contributing

Thank you for considering contributing to FastAPI-MCP! We encourage the community to post Issues and create Pull Requests.

Before you get started, please see our Contribution Guide.

Community

Join MCParty Slack community to connect with other MCP enthusiasts, ask questions, and share your experiences with FastAPI-MCP.

Requirements

  • Python 3.10+ (Recommended 3.12)
  • uv

License

MIT License. Copyright (c) 2025 Tadata Inc.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选