FastIntercom MCP Server
Enables fast, local access to Intercom conversations through intelligent caching and background synchronization. Provides sub-100ms search capabilities for conversation analytics with natural language timeframes and text search.
README
FastIntercom MCP Server
High-performance Model Context Protocol (MCP) server for Intercom conversation analytics. Provides fast, local access to Intercom conversations through intelligent caching and background synchronization.
Features
- 🚀 Fast Local Access: Sub-100ms response times for conversation searches
- 🧠 Intelligent Sync: Request-triggered background updates ensure fresh data
- 💾 Efficient Storage: SQLite-based local storage (~2KB per conversation)
- 🔍 Powerful Search: Natural language timeframes and text search
- ⚡ MCP Integration: Direct integration with Claude Desktop and MCP clients
Quick Start
Installation
# Clone and install
git clone <repository-url>
cd fast-intercom-mcp
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -e .
Setup
# Initialize with your Intercom credentials
fast-intercom-mcp init
# Check status
fast-intercom-mcp status
# Sync conversation history
fast-intercom-mcp sync --force --days 7
Claude Desktop Integration
Add to your Claude Desktop configuration (~/.config/claude/claude_desktop_config.json):
{
"mcpServers": {
"fast-intercom-mcp": {
"command": "fast-intercom-mcp",
"args": ["start"],
"env": {
"INTERCOM_ACCESS_TOKEN": "your_token_here"
}
}
}
}
Usage
CLI Commands
fast-intercom-mcp status # Show server status and statistics
fast-intercom-mcp sync # Incremental sync of recent conversations
fast-intercom-mcp sync --force --days 7 # Force sync last 7 days
fast-intercom-mcp start # Start MCP server
fast-intercom-mcp logs # View recent log entries
fast-intercom-mcp reset # Reset all data
MCP Tools
Once connected to Claude Desktop, you can ask questions like:
- "Search for conversations about billing in the last 7 days"
- "Show me customer conversations from yesterday"
- "What's the status of the FastIntercom server?"
- "Get conversation details for ID 123456789"
Configuration
Environment Variables
INTERCOM_ACCESS_TOKEN=your_token_here
FASTINTERCOM_LOG_LEVEL=INFO
FASTINTERCOM_MAX_SYNC_AGE_MINUTES=5
FASTINTERCOM_BACKGROUND_SYNC_INTERVAL=10
Configuration File
Located at ~/.fast-intercom-mcp/config.json:
{
"log_level": "INFO",
"max_sync_age_minutes": 5,
"background_sync_interval_minutes": 10,
"initial_sync_days": 30
}
Architecture
Intelligent Sync Strategy
FastIntercom uses a sophisticated caching strategy:
- Immediate Response: MCP requests return data instantly from local cache
- Background Sync: Stale timeframes trigger background updates
- Smart Triggers: System learns from request patterns to optimize sync timing
- Fresh Data: Next request gets updated data from background sync
Components
- Database: SQLite with optimized schema for fast searches
- Sync Service: Background service with intelligent refresh logic
- MCP Server: Model Context Protocol implementation
- CLI Interface: Command-line tools for management and monitoring
Development
Testing
Quick Tests
# Unit tests
pytest tests/
# Integration test (requires API key)
./scripts/run_integration_test.sh
# Docker test
./scripts/test_docker_install.sh
Comprehensive Testing
# Full unit test suite with coverage
pytest tests/ --cov=fast_intercom_mcp
# Integration test with performance report
./scripts/run_integration_test.sh --performance-report
# Docker clean install test
./scripts/test_docker_install.sh --with-api-test
# Performance benchmarking
./scripts/run_performance_test.sh
CI/CD Integration
- Fast Check: Runs on every PR (unit tests, linting, imports)
- Integration Test: Manual/weekly trigger with real API data
- Docker Test: On releases and deployment validation
For detailed testing procedures, see:
docs/TESTING.md- Complete testing guidedocs/INTEGRATION_TESTING.md- Integration test proceduresscripts/README.md- Test script documentation
Local Development
# Install in development mode
pip install -e .
# Run with verbose logging
fast-intercom-mcp --verbose status
# Monitor logs in real-time
tail -f ~/.fast-intercom-mcp/logs/fast-intercom-mcp.log
Performance
Typical Performance Metrics
- Response Time: <100ms for cached queries
- Storage Efficiency: ~2KB per conversation average
- Sync Speed: 10-50 conversations/second
- Memory Usage: <100MB for server process
Storage Requirements
- Small workspace: 100-500 conversations, ~5-25 MB
- Medium workspace: 1,000-5,000 conversations, ~50-250 MB
- Large workspace: 10,000+ conversations, ~500+ MB
Troubleshooting
Common Issues
Connection Failed
- Verify your Intercom access token
- Check token permissions (read conversations required)
- Test:
curl -H "Authorization: Bearer YOUR_TOKEN" https://api.intercom.io/me
Database Locked
- Stop any running FastIntercom processes:
ps aux | grep fast-intercom-mcp - Check log file:
~/.fast-intercom-mcp/logs/fast-intercom-mcp.log
MCP Server Not Responding
- Verify Claude Desktop config JSON syntax
- Restart Claude Desktop after configuration changes
- Check that the
fast-intercom-mcpcommand is available in PATH
Debug Mode
fast-intercom-mcp --verbose start # Enable verbose logging
export FASTINTERCOM_LOG_LEVEL=DEBUG # Set debug level
API Reference
MCP Tools
search_conversations
Search conversations with flexible filters.
Parameters:
query(string): Text to search in conversation messagestimeframe(string): Natural language timeframe ("last 7 days", "this month", etc.)customer_email(string): Filter by specific customer emaillimit(integer): Maximum conversations to return (default: 50)
get_conversation
Get full details of a specific conversation.
Parameters:
conversation_id(string, required): Intercom conversation ID
get_server_status
Get server status and statistics.
Parameters: None
sync_conversations
Trigger manual conversation sync.
Parameters:
force(boolean): Force full sync even if recent data exists
Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
License
MIT License - see LICENSE file for details.
Support
- Issues: GitHub Issues
- Documentation: This README and inline code documentation
- Logs: Check
~/.fast-intercom-mcp/logs/fast-intercom-mcp.logfor detailed information
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。