FastMCP Demo
A demonstration TypeScript MCP server that showcases basic MCP concepts with simple tools (greeting, calculator), text resources, and prompt templates for learning the Model Context Protocol.
README
FastMCP Demo - TypeScript MCP Server
A demonstration project to understand the Model Context Protocol (MCP) using TypeScript. This project implements a basic MCP server with tools, resources, and prompts.
What is MCP?
The Model Context Protocol (MCP) is a standardized protocol that enables AI assistants to securely access external data sources and tools. It provides a way for AI models to:
- Tools: Execute functions and operations
- Resources: Access data and information
- Prompts: Use predefined prompt templates
Project Structure
fast-mcp/
├── src/
│ └── index.ts # Main MCP server implementation
├── dist/ # Compiled JavaScript (generated)
├── package.json # Project dependencies
├── tsconfig.json # TypeScript configuration
└── README.md # This file
Features
This demo server includes:
Tools
- hello: A simple greeting tool that welcomes users
- calculate: Performs basic arithmetic operations (add, subtract, multiply, divide)
Resources
- demo://example: A simple text resource
- demo://config: Server configuration in JSON format
Prompts
- greet_user: Generates a greeting message for a user
- explain_mcp: Provides an explanation of what MCP is
Setup
-
Install dependencies:
npm install -
Build the project:
npm run build -
Run the server:
npm startOr use the development mode with auto-reload:
npm run dev
How MCP Works
Server Initialization
The server is created with capabilities for tools, resources, and prompts:
const server = new Server(
{ name: "fast-mcp-demo", version: "0.1.0" },
{
capabilities: {
tools: {},
resources: {},
prompts: {},
},
}
);
Transport
This server uses stdio (standard input/output) transport, which means it communicates via stdin/stdout. This is the most common transport for MCP servers.
Request Handlers
Each capability requires request handlers:
ListToolsRequestSchema- Lists available toolsCallToolRequestSchema- Executes a toolListResourcesRequestSchema- Lists available resourcesReadResourceRequestSchema- Reads a resourceListPromptsRequestSchema- Lists available promptsGetPromptRequestSchema- Gets a prompt with arguments
Testing with MCP Clients
To test this server, you'll need an MCP client. Popular options include:
- Claude Desktop - Add the server to your MCP configuration
- MCP Inspector - A debugging tool for MCP servers
- Custom MCP Client - Build your own using the MCP SDK
Example Configuration (Claude Desktop)
Add to your Claude Desktop MCP settings:
{
"mcpServers": {
"fast-mcp-demo": {
"command": "node",
"args": ["/path/to/fast-mcp/dist/index.js"]
}
}
}
Learning Path
This project was built incrementally to understand MCP concepts:
- ✅ Initial Setup - TypeScript configuration and dependencies
- ✅ Basic Server - Simple server with hello tool
- ✅ Resources - Added resource reading capabilities
- ✅ Prompts - Added prompt templates
- ✅ Advanced Tools - Added calculate tool with error handling
Key Concepts
Tools
Tools are functions that the AI can call. They have:
- A name and description
- An input schema (JSON Schema)
- Execution logic that returns results
Resources
Resources are data sources that can be read. They have:
- A URI identifier
- A name and description
- A MIME type
- Content that can be retrieved
Prompts
Prompts are template messages that can be used to guide AI interactions. They have:
- A name and description
- Optional arguments
- Message templates
Next Steps
To extend this demo, consider:
- Adding file system resources
- Implementing authentication
- Adding more complex tools (API calls, database queries)
- Using different transports (SSE, HTTP)
- Adding logging and error handling middleware
- Implementing caching for resources
Resources
- MCP Specification
- MCP TypeScript SDK
- FastMCP (Python) - The Python equivalent
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。