FastMCP Demo

FastMCP Demo

A demonstration TypeScript MCP server that showcases basic MCP concepts with simple tools (greeting, calculator), text resources, and prompt templates for learning the Model Context Protocol.

Category
访问服务器

README

FastMCP Demo - TypeScript MCP Server

A demonstration project to understand the Model Context Protocol (MCP) using TypeScript. This project implements a basic MCP server with tools, resources, and prompts.

What is MCP?

The Model Context Protocol (MCP) is a standardized protocol that enables AI assistants to securely access external data sources and tools. It provides a way for AI models to:

  • Tools: Execute functions and operations
  • Resources: Access data and information
  • Prompts: Use predefined prompt templates

Project Structure

fast-mcp/
├── src/
│   └── index.ts          # Main MCP server implementation
├── dist/                 # Compiled JavaScript (generated)
├── package.json          # Project dependencies
├── tsconfig.json         # TypeScript configuration
└── README.md            # This file

Features

This demo server includes:

Tools

  • hello: A simple greeting tool that welcomes users
  • calculate: Performs basic arithmetic operations (add, subtract, multiply, divide)

Resources

  • demo://example: A simple text resource
  • demo://config: Server configuration in JSON format

Prompts

  • greet_user: Generates a greeting message for a user
  • explain_mcp: Provides an explanation of what MCP is

Setup

  1. Install dependencies:

    npm install
    
  2. Build the project:

    npm run build
    
  3. Run the server:

    npm start
    

    Or use the development mode with auto-reload:

    npm run dev
    

How MCP Works

Server Initialization

The server is created with capabilities for tools, resources, and prompts:

const server = new Server(
  { name: "fast-mcp-demo", version: "0.1.0" },
  {
    capabilities: {
      tools: {},
      resources: {},
      prompts: {},
    },
  }
);

Transport

This server uses stdio (standard input/output) transport, which means it communicates via stdin/stdout. This is the most common transport for MCP servers.

Request Handlers

Each capability requires request handlers:

  • ListToolsRequestSchema - Lists available tools
  • CallToolRequestSchema - Executes a tool
  • ListResourcesRequestSchema - Lists available resources
  • ReadResourceRequestSchema - Reads a resource
  • ListPromptsRequestSchema - Lists available prompts
  • GetPromptRequestSchema - Gets a prompt with arguments

Testing with MCP Clients

To test this server, you'll need an MCP client. Popular options include:

  1. Claude Desktop - Add the server to your MCP configuration
  2. MCP Inspector - A debugging tool for MCP servers
  3. Custom MCP Client - Build your own using the MCP SDK

Example Configuration (Claude Desktop)

Add to your Claude Desktop MCP settings:

{
  "mcpServers": {
    "fast-mcp-demo": {
      "command": "node",
      "args": ["/path/to/fast-mcp/dist/index.js"]
    }
  }
}

Learning Path

This project was built incrementally to understand MCP concepts:

  1. Initial Setup - TypeScript configuration and dependencies
  2. Basic Server - Simple server with hello tool
  3. Resources - Added resource reading capabilities
  4. Prompts - Added prompt templates
  5. Advanced Tools - Added calculate tool with error handling

Key Concepts

Tools

Tools are functions that the AI can call. They have:

  • A name and description
  • An input schema (JSON Schema)
  • Execution logic that returns results

Resources

Resources are data sources that can be read. They have:

  • A URI identifier
  • A name and description
  • A MIME type
  • Content that can be retrieved

Prompts

Prompts are template messages that can be used to guide AI interactions. They have:

  • A name and description
  • Optional arguments
  • Message templates

Next Steps

To extend this demo, consider:

  • Adding file system resources
  • Implementing authentication
  • Adding more complex tools (API calls, database queries)
  • Using different transports (SSE, HTTP)
  • Adding logging and error handling middleware
  • Implementing caching for resources

Resources

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选