FastMCP

FastMCP

A lightweight Model Context Protocol server that enables creating, managing, and querying model contexts with integrated Datadog metrics and monitoring.

Category
访问服务器

README

FastMCP - Model Context Protocol Server

A lightweight Model Context Protocol (MCP) server implemented with FastMCP, a fast and Pythonic framework for building MCP servers and clients.

Features

  • Create, retrieve, update, and delete model contexts
  • Query execution against specific contexts
  • Filtering by model name and tags
  • In-memory storage (for development)
  • FastMCP integration for easy MCP server development
  • Datadog integration for metrics and monitoring

Requirements

  • Python 3.7+
  • FastMCP
  • uv (recommended for environment management)
  • Datadog account (optional, for metrics)

Installation

Using uv (Recommended)

The simplest way to install is using the provided scripts:

Unix/Linux/macOS

# Clone the repository
git clone https://github.com/yourusername/datadog-mcp-server.git
cd datadog-mcp-server

# Make the install script executable
chmod +x install.sh

# Run the installer
./install.sh

Windows

# Clone the repository
git clone https://github.com/yourusername/datadog-mcp-server.git
cd datadog-mcp-server

# Run the installer
.\install.ps1

Manual Installation

# Clone the repository
git clone https://github.com/yourusername/datadog-mcp-server.git
cd datadog-mcp-server

# Create and activate a virtual environment with uv
uv venv
# On Unix/Linux/macOS:
source .venv/bin/activate
# On Windows:
.\.venv\Scripts\activate

# Install dependencies
uv pip install -r requirements.txt

Datadog Configuration

The server integrates with Datadog for metrics and monitoring. You can configure Datadog API credentials in several ways:

1. Environment Variables

Set these environment variables before starting the server:

# Unix/Linux/macOS
export DATADOG_API_KEY=your_api_key
export DATADOG_APP_KEY=your_app_key  # Optional
export DATADOG_SITE=datadoghq.com    # Optional, default: datadoghq.com

# Windows PowerShell
$env:DATADOG_API_KEY = 'your_api_key'
$env:DATADOG_APP_KEY = 'your_app_key'  # Optional
$env:DATADOG_SITE = 'datadoghq.com'    # Optional

2. .env File

Create a .env file in the project directory:

DATADOG_API_KEY=your_api_key
DATADOG_APP_KEY=your_app_key
DATADOG_SITE=datadoghq.com

3. FastMCP CLI Installation

When installing as a Claude Desktop tool, you can pass environment variables:

fastmcp install mcp_server.py --name "Model Context Server" -v DATADOG_API_KEY=your_api_key

4. Runtime Configuration

Use the configure_datadog tool at runtime:

result = await client.call_tool("configure_datadog", {
    "api_key": "your_api_key",
    "app_key": "your_app_key",  # Optional
    "site": "datadoghq.com"     # Optional
})

Usage

Starting the Server

# Start directly from activated environment
python mcp_server.py

# Or use uv run (no activation needed)
uv run python mcp_server.py

# Use FastMCP CLI for development (if in activated environment)
fastmcp dev mcp_server.py

# Use FastMCP CLI with uv (no activation needed)
uv run -m fastmcp dev mcp_server.py

Installing as a Claude Desktop Tool

# From activated environment
fastmcp install mcp_server.py --name "Model Context Server"

# Using uv directly
uv run python -m fastmcp install mcp_server.py --name "Model Context Server"

# With Datadog API key
fastmcp install mcp_server.py --name "Model Context Server" -v DATADOG_API_KEY=your_api_key

Using the Tools

The server provides the following tools:

  • create_context - Create a new context
  • get_context - Retrieve a specific context
  • update_context - Update an existing context
  • delete_context - Delete a context
  • list_contexts - List all contexts (with optional filtering)
  • query_model - Execute a query against a specific context
  • health_check - Server health check
  • configure_datadog - Configure Datadog integration at runtime

Example Requests

Creating a Context

result = await client.call_tool("create_context", {
    "context_id": "model-123",
    "model_name": "gpt-3.5",
    "data": {
        "parameters": {
            "temperature": 0.7
        }
    },
    "tags": ["production", "nlp"]
})

Executing a Query

result = await client.call_tool("query_model", {
    "context_id": "model-123",
    "query_data": {
        "prompt": "Hello, world!"
    }
})

Configuring Datadog

result = await client.call_tool("configure_datadog", {
    "api_key": "your_datadog_api_key",
    "app_key": "your_datadog_app_key",  # Optional
    "site": "datadoghq.com"             # Optional
})

Datadog Metrics

The server reports the following metrics to Datadog:

  • mcp.contexts.created - Context creation events
  • mcp.contexts.updated - Context update events
  • mcp.contexts.deleted - Context deletion events
  • mcp.contexts.accessed - Context access events
  • mcp.contexts.total - Total number of contexts
  • mcp.contexts.listed - List contexts operation events
  • mcp.queries.executed - Query execution events
  • mcp.server.startup - Server startup events
  • mcp.server.shutdown - Server shutdown events

Development

See the included mcp_example.py for a client implementation example:

# Run the example client (with activated environment)
python mcp_example.py

# Run with uv (no activation needed)
uv run python mcp_example.py

License

MIT

Resources

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选