FastMCP Documentation Search Server
Enables intelligent search through FastMCP documentation using TF-IDF indexing, along with utility tools for arithmetic operations, text hashing, and web page content extraction via Jina Reader.
README
FastMCP Search Server 🚀
Português
Servidor baseado no protocolo MCP (Model Context Protocol) projetado para fornecer uma infraestrutura de Arquitetura de Acesso + Contexto. Este sistema permite que Agentes de IA estendam suas capacidades através de ferramentas locais e recuperação de dados especializados sem a necessidade de processamento de LLM no lado do servidor.
🏗️ Arquitetura e Funcionamento
O sistema opera como uma camada intermediária de inteligência local, automatizando a busca e o processamento de dados para injetar apenas o necessário na janela de contexto do cliente.
graph TD
User((Usuário)) --> Client[MCP Client / Interface]
subgraph "Camada de Comunicação"
Client <==> Protocol(MCP Protocol)
end
subgraph "FastMCP Server (Infraestrutura Local)"
Protocol <==> Tools{Motor de Ferramentas}
Tools --> Index[minsearch / TF-IDF]
Tools --> Scraping[Jina Reader]
Tools --> Logic[Lógica Local]
end
Index --- Docs[(Documentação Local)]
Scraping --- Web((Web))
🛠️ Ferramentas, Inputs e Outputs
| Ferramenta | Descrição | Input | Output |
|---|---|---|---|
search_docs |
Busca semântica inteligente usando TF-IDF. | query (string) |
Lista dos 5 documentos mais relevantes com preview. |
scrape_page |
Web scraping otimizado para IA. | url (string) |
Conteúdo da página em Markdown limpo. |
hash_text |
Geração de hash para integridade. | text (string) |
String SHA-256 hexadecimal. |
add |
Operação aritmética precisa. | a (int), b (int) |
Soma literal dos números. |
💻 Stack Tecnológica
- FastMCP: Framework principal para orquestração do protocolo.
- minsearch: Motor de busca minimalista para indexação in-memory.
- Scikit-learn & Pandas: Vetorização e manipulação de dados estruturados.
- Jina Reader API: Conversão de HTML para Markdown legível por IA.
🚀 Instalação
# Clone o repositório e instale as dependências
uv sync
# Execute o servidor
uv run python main.py
English
A server based on the Model Context Protocol (MCP) designed to provide an Architecture of Access + Context. This system allows AI Agents to extend their capabilities through local tools and specialized data retrieval without the need for LLM processing on the server side.
🏗️ Architecture and Workflow
The system operates as an intermediate layer of local intelligence, automating data search and processing to inject only what is necessary into the client's context window.
graph TD
User((User)) --> Client[MCP Client / Interface]
subgraph "Communication Layer"
Client <==> Protocol(MCP Protocol)
end
subgraph "FastMCP Server (Local Infrastructure)"
Protocol <==> Tools{Tools Engine}
Tools --> Index[minsearch / TF-IDF]
Tools --> Scraping[Jina Reader]
Tools --> Logic[Local Logic]
end
Index --- Docs[(Local Docs)]
Scraping --- Web((Web))
🛠️ Tools, Inputs, and Outputs
| Tool | Description | Input | Output |
|---|---|---|---|
search_docs |
Intelligent semantic search using TF-IDF. | query (string) |
List of the 5 most relevant docs with content preview. |
scrape_page |
AI-optimized web scraping. | url (string) |
Page content in clean Markdown. |
hash_text |
Hash generation for data integrity. | text (string) |
SHA-256 hexadecimal string. |
add |
Precise arithmetic operation. | a (int), b (int) |
Literal sum of the numbers. |
💻 Technical Stack
- FastMCP: Core framework for protocol orchestration.
- minsearch: Minimalist search engine for in-memory indexing.
- Scikit-learn & Pandas: Vectorization and structured data handling.
- Jina Reader API: HTML to AI-readable Markdown conversion.
🚀 Getting Started
# Clone the repository and install dependencies
uv sync
# Run the server
uv run python main.py
📝 Conclusão / Conclusion
Este projeto demonstra a viabilidade de construir camadas de suporte para agentes de IA que priorizam a eficiência e a soberania dos dados. Ao utilizar o protocolo MCP, removemos a fricção entre bases de dados locais e modelos globais, garantindo que o contexto injetado seja preciso, relevante e processado de forma otimizada.
This project demonstrates the feasibility of building support layers for AI agents that prioritize efficiency and data sovereignty. By using the MCP protocol, we remove the friction between local databases and global models, ensuring that the injected context is accurate, relevant, and optimally processed.
Developed as part of the AI Dev Bootcamp.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。