FastMCP Quickstart
A simple example MCP server built with FastMCP and Python that provides a greeting tool, designed as a quickstart template for Smithery deployment.
README
FastMCP Quickstart for Smithery
A simple example of creating an MCP server using FastMCP and Python, designed to work with Smithery.
What This Does
This server provides a single tool called greet that takes a name and returns a friendly greeting message. You'll test it using the Smithery Playground for interactive development.
Prerequisites
- Python 3.12 or higher
- uv package manager
- Node.js and npx (optional, for Smithery CLI and playground)
Quick Start
-
Clone the repository:
git clone https://github.com/smithery-ai/smithery-cookbook.git cd smithery-cookbook/servers/python/quickstart -
Install Smithery CLI (optional, for playground testing):
npm install -g @smithery/cli -
Install dependencies:
uv sync -
Run the server:
uv run python main.py -
Test it's working: The server will start on
http://localhost:8081 -
Launch Smithery Playground: In a new terminal, launch the interactive Smithery playground:
smithery playground --port 8081This will open a web interface where you can:
- Interact with your MCP server in real-time
- Test the
greettool with different inputs - See the complete request/response flow
- Debug and iterate on your MCP tools quickly
-
Add Smithery session configuration (optional):
This step has three parts to add session-based configuration handling:
- Part A: Add config validation function
- Part B: Update the tool to use config validation
- Part C: Test with configuration
Skip to step 8 if you don't need session configuration.
-
Deploy to Smithery: To deploy your MCP server:
- Push your code to GitHub (make sure to include the
smithery.yamlandDockerfile) - Connect your repository at https://smithery.ai/new
- Push your code to GitHub (make sure to include the
Your server will be available over HTTP and ready to use with any MCP-compatible client!
Stopping the Server
Press Ctrl+C in the terminal to stop the server.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。