FastMCP Todo Server
A server that receives todo requests via FastMCP and stores them in MongoDB for processing by the Swarmonomicon todo worker.
README
FastMCP Todo Server
A FastMCP-based Todo Server for the Swarmonomicon project. This server receives todo requests via FastMCP and stores them in MongoDB for processing by the Swarmonomicon todo worker.
Features
- FastMCP server for receiving todo requests
- MongoDB integration for todo storage
- Compatible with Swarmonomicon todo worker
- Python-based implementation
Installation
-
Clone the repository:
git clone https://github.com/DanEdens/Omnispindle.git cd Omnispindle -
Install uv (if not already installed):
curl -LsSf https://astral.sh/uv/install.sh | sh -
Create and activate a virtual environment with uv:
uv venv source .venv/bin/activate # On Unix/macOS # or .venv\Scripts\activate # On Windows -
Install dependencies with uv:
uv pip install -r requirements.txt -
For development, install additional dependencies:
uv pip install -r requirements-dev.txt -
Create a
.envfile with your configuration:MONGODB_URI=mongodb://localhost:27017 MONGODB_DB=swarmonomicon MONGODB_COLLECTION=todos
Usage
Starting the Server
- Start the FastMCP server:
python -m src.Omnispindle
Adding Todos
You can add todos using FastMCP in several ways:
-
Using FastMCP Python client:
from fastmcp import FastMCPClient client = FastMCPClient() response = await client.call_tool("add_todo", { "description": "Example todo", "priority": "high", # optional, defaults to "medium" "target_agent": "user" # optional, defaults to "user" }) -
Using MQTT directly:
mosquitto_pub -t "mcp/todo/new" -m '{ "description": "Example todo", "priority": "high", "target_agent": "user" }'
Development
-
Run tests:
pytest tests/ -
Run tests with coverage:
pytest --cov=src tests/ -
Run specific test file:
pytest tests/test_todo_handler.py -v
Integration with Swarmonomicon
This server is part of the larger Swarmonomicon project, which provides:
- Task management and distribution
- Agent-based task processing
- Real-time updates via MQTT
- Integration with various AI models
For more information about the Swarmonomicon project and its features, check out the main project documentation.
License
MIT License
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests for new functionality
- Submit a pull request
For more information about contributing to the Swarmonomicon project, see the main project's contributing guidelines.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。