FastMCP Training Course Server
An educational MCP server example built with FastMCP that demonstrates how to expose tools, resources, and prompts to AI clients. Provides a learning foundation for building MCP servers with Python and integrating them with AI applications like IDEs and chatbots.
README
Example MCP Server with FastMCP (Python)
Overview
This repository provides an educational example of a Model Context Protocol (MCP) server implemented in Python using the FastMCP library. It demonstrates how to expose tools, resources, and prompts to AI clients, enabling seamless integration with applications like IDEs, chatbots, and agent frameworks.
What is MCP?
Model Context Protocol (MCP) is an open protocol that standardizes how AI applications connect to external tools and data sources. MCP servers expose:
- Tools: Executable functions that can be called by AI clients
- Resources: Data sources for context (files, APIs, etc.)
- Prompts: Reusable templates for interactions
Learn more: modelcontextprotocol.io
Why FastMCP?
FastMCP is a Python library for building MCP servers quickly and easily. It provides:
- Simple API for defining tools, resources, and prompts
- Support for stdio and HTTP transports
- Type-safe schemas for tool inputs/outputs
- Integration with popular Python frameworks
How does MCP work?
MCP uses a client-server architecture:
- Host: The AI application (e.g., VS Code, Claude Desktop)
- Client: Connects to one or more MCP servers
- Server: Exposes tools, resources, and prompts
Servers declare their capabilities during initialization. Tools are listed and can be invoked by the client or model. FastMCP makes it easy to implement these features in Python.
Example Features
- Define Python functions as MCP tools
- Expose resources (e.g., files, API data)
- Add prompts for structured interactions
- Support for both stdio and HTTP transports
Usage
- Install FastMCP:
pip install fastmcp - Run the example server:
python mcp_server.py - Connect an MCP-compatible client (e.g., Claude Desktop, VS Code, etc.) to the server.
See mcp_server.py for example code.
References
Note: This example is for educational purposes. Always review server code and tool definitions before connecting to any AI application.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。