Faulkner DB

Faulkner DB

A temporal knowledge graph system that enables users to record and query architectural decisions, implementation patterns, and project failures. It integrates with Claude to provide hybrid search, timeline tracking, and automated knowledge gap detection using graph analysis.

Category
访问服务器

README

Faulkner DB - Temporal Knowledge Graph System

License: MIT Python Version Docker npm version CI Status GitHub stars

Faulkner DB empowers software teams to capture, query, and analyze architectural decisions, implementation patterns, and failures as they evolve over time. Built on FalkorDB (CPU-friendly graph database) with hybrid search capabilities, it provides unparalleled insights into your project's history, fostering better decision-making and reducing technical debt.

🎯 Value Proposition

  • Improved Decision Tracking - Capture the rationale behind architectural choices and their impact over time
  • Enhanced Collaboration - Facilitate knowledge sharing and alignment across teams
  • Reduced Technical Debt - Identify and address problematic patterns early
  • Faster Onboarding - Accelerate learning for new team members with comprehensive project history
  • AI-Ready Knowledge Base - Structure knowledge for AI-powered development tools (Claude Code/Desktop)

✨ Key Features

  • Temporal Knowledge Graph - Track changes to decisions and patterns over time
  • Hybrid Search - Graph traversal + vector embeddings + CrossEncoder reranking (<2s queries)
  • Gap Detection - NetworkX-based structural analysis to identify knowledge gaps
  • MCP Integration - 7 tools for seamless Claude Desktop/Code integration
  • Docker Deployment - One-command startup with auto-restart support
  • CPU-Friendly - Built on FalkorDB, no GPU required (gaming-friendly memory footprint)

📖 Documentation

🚀 Quick Start

Option 1: Automated NPM Setup (Recommended)

# Configure Claude Desktop/Code automatically
npx faulkner-db-config setup

# Clone and start the stack
git clone https://github.com/platano78/faulkner-db.git
cd faulkner-db/docker
docker-compose up -d

# Restart Claude Desktop/Code

Option 2: Manual Setup

1. Start FalkorDB Stack

git clone https://github.com/platano78/faulkner-db.git
cd faulkner-db/docker

# Copy environment template
cp .env.example .env

# Edit .env and set POSTGRES_PASSWORD

# Start services
docker-compose up -d

2. Configure Claude (Manual)

Add to ~/.config/Claude/claude_desktop_config.json (Linux) or equivalent:

{
  "mcpServers": {
    "faulkner-db": {
      "command": "python3",
      "args": ["-m", "mcp_server.server"],
      "env": {
        "PYTHONPATH": "/path/to/faulkner-db",
        "FALKORDB_HOST": "localhost",
        "FALKORDB_PORT": "6379"
      }
    }
  }
}

3. Access Services

  • Network Graph: http://localhost:8082/static/index.html
  • Timeline View: http://localhost:8082/static/timeline.html
  • Dashboard: http://localhost:8082/static/dashboard.html
  • API Health: http://localhost:8082/health
  • FalkorDB UI: http://localhost:8081

🏗️ Architecture

┌─────────────────────┐    ┌─────────────────────┐    ┌─────────────────────┐
│   Claude Code/      │    │   Faulkner DB       │    │     FalkorDB        │
│   Desktop           │───▶│   (MCP Server)      │───▶│   (Graph DB)        │
│                     │    │   Temporal Logic     │    │   CPU-Friendly      │
└─────────────────────┘    └─────────────────────┘    └─────────────────────┘
         │                          │                           │
         │                          │                           │
         ▼                          ▼                           ▼
┌─────────────────────┐    ┌─────────────────────┐    ┌─────────────────────┐
│   7 MCP Tools       │    │   Hybrid Search      │    │   PostgreSQL        │
│   - add_decision    │    │   Graph + Vector     │    │   (Metadata Store)  │
│   - query_decisions │    │   + Reranking        │    │                     │
│   - detect_gaps     │    │                      │    │                     │
│   - get_timeline    │    │                      │    │                     │
└─────────────────────┘    └─────────────────────┘    └─────────────────────┘

📚 MCP Tools Documentation

1. add_decision

Record architectural decision with full context and rationale.

{
  "description": "Use FalkorDB for temporal graphs",
  "rationale": "CPU-friendly, Redis-compatible, excellent temporal support",
  "alternatives": ["Neo4j", "ArangoDB"],
  "related_to": []
}

2. query_decisions

Hybrid search for decisions by topic/timeframe.

{
  "query": "authentication decisions",
  "timeframe": {
    "start": "2024-01-01",
    "end": "2024-12-31"
  }
}

3. add_pattern

Store successful implementation pattern.

{
  "name": "CQRS Pattern",
  "implementation": "Separate read/write models with event sourcing",
  "use_cases": ["High-scale systems", "Event-driven architecture"],
  "context": "Microservices with async communication"
}

4. add_failure

Document what didn't work and lessons learned.

{
  "attempt": "Used RabbitMQ with 50+ queues",
  "reason_failed": "Performance degradation under load",
  "lesson_learned": "Use Kafka for high-throughput streaming",
  "alternative_solution": "Migrated to Kafka with topic partitioning"
}

5. find_related

Graph traversal to discover related knowledge nodes.

{
  "node_id": "D-abc123",
  "depth": 2
}

6. detect_gaps

Run NetworkX structural analysis to identify knowledge gaps (>85% accuracy).

{}

7. get_timeline

Temporal view showing how understanding evolved over time.

{
  "topic": "Authentication System",
  "start_date": "2023-01-01",
  "end_date": "2024-12-31"
}

🛠️ Technical Stack

Component Technology
Graph Database FalkorDB (CPU-only)
Metadata Store PostgreSQL
Embeddings sentence-transformers (all-MiniLM-L6-v2)
Reranking cross-encoder/ms-marco-MiniLM-L-6-v2
Graph Analysis NetworkX
MCP Server Python 3.8+
Deployment Docker Compose

⚡ Performance

  • Query Time: <2s (hybrid search with reranking)
  • Accuracy: 90%+ on decision queries
  • Gap Detection: >85% accuracy
  • Memory: Gaming-friendly (FalkorDB: 2GB, PostgreSQL: 1GB)
  • Scalability: Tested with 10,000+ nodes

🔧 Configuration

Environment Variables

Create docker/.env from .env.example:

# FalkorDB Configuration
FALKORDB_HOST=falkordb
FALKORDB_PORT=6379
FALKORDB_MEMORY_LIMIT=2gb

# PostgreSQL Configuration
POSTGRES_HOST=postgres
POSTGRES_PORT=5432
POSTGRES_USER=graphiti
POSTGRES_PASSWORD=YOUR_SECURE_PASSWORD
POSTGRES_DB=graphiti

MCP Server Configuration

The MCP server automatically connects to FalkorDB and PostgreSQL using environment variables. No additional configuration needed.

🐛 Troubleshooting

Docker containers not starting

# Check container status
docker-compose ps

# View logs
docker-compose logs -f

# Restart services
docker-compose restart

FalkorDB connection errors

  • Verify FalkorDB is running: docker-compose ps
  • Check port 6379 is not in use: lsof -i :6379
  • Review FalkorDB logs: docker-compose logs falkordb

MCP server not detected in Claude

  1. Verify configuration path matches your OS (see npm package docs)
  2. Restart Claude Desktop/Code after config changes
  3. Check Python path in MCP config is correct
  4. Ensure Docker stack is running

Data persistence issues

  • Verify docker/data/ directory has correct permissions
  • Check FALKORDB_PERSISTENCE=true in .env
  • Backup data: docker-compose exec falkordb redis-cli BGSAVE

🤝 Contributing

We welcome contributions! Please follow these guidelines:

  1. Fork the repository and create a feature branch
  2. Write tests for new features (pytest)
  3. Follow code style (PEP 8 for Python)
  4. Document changes in code and README
  5. Submit pull request with clear description

Development Setup

# Clone repository
git clone https://github.com/platano78/faulkner-db.git
cd faulkner-db

# Install dependencies
pip install -r requirements.txt

# Run tests
pytest tests/ -v

# Run with coverage
pytest tests/ --cov=core --cov=mcp_server

See CONTRIBUTING.md for detailed guidelines.

📄 License

MIT License - see LICENSE for details.

🗺️ Roadmap

  • [x] Phase 1: Core Knowledge Graph
  • [x] Phase 2: Hybrid Search
  • [x] Phase 3: Gap Detection
  • [x] Phase 4: MCP Server Integration
  • [x] Phase 5: Docker Deployment
  • [x] Phase 6: Testing & Validation
  • [ ] Phase 7: Advanced Analytics Dashboard
  • [ ] Phase 8: Multi-tenant Support
  • [ ] Phase 9: Cloud Deployment Options

📞 Support

  • Issues: https://github.com/platano78/faulkner-db/issues
  • Discussions: https://github.com/platano78/faulkner-db/discussions
  • Documentation: https://github.com/platano78/faulkner-db/wiki

🙏 Acknowledgments

Built with:


Made with ❤️ for software teams who value architectural knowledge

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选