Faulkner DB
A temporal knowledge graph system that enables users to record and query architectural decisions, implementation patterns, and project failures. It integrates with Claude to provide hybrid search, timeline tracking, and automated knowledge gap detection using graph analysis.
README
Faulkner DB - Temporal Knowledge Graph System
Faulkner DB empowers software teams to capture, query, and analyze architectural decisions, implementation patterns, and failures as they evolve over time. Built on FalkorDB (CPU-friendly graph database) with hybrid search capabilities, it provides unparalleled insights into your project's history, fostering better decision-making and reducing technical debt.
🎯 Value Proposition
- Improved Decision Tracking - Capture the rationale behind architectural choices and their impact over time
- Enhanced Collaboration - Facilitate knowledge sharing and alignment across teams
- Reduced Technical Debt - Identify and address problematic patterns early
- Faster Onboarding - Accelerate learning for new team members with comprehensive project history
- AI-Ready Knowledge Base - Structure knowledge for AI-powered development tools (Claude Code/Desktop)
✨ Key Features
- Temporal Knowledge Graph - Track changes to decisions and patterns over time
- Hybrid Search - Graph traversal + vector embeddings + CrossEncoder reranking (<2s queries)
- Gap Detection - NetworkX-based structural analysis to identify knowledge gaps
- MCP Integration - 7 tools for seamless Claude Desktop/Code integration
- Docker Deployment - One-command startup with auto-restart support
- CPU-Friendly - Built on FalkorDB, no GPU required (gaming-friendly memory footprint)
📖 Documentation
- Integration Setup Guide - Set up Agent Genesis + Faulkner-DB sync
- Contributing Guidelines - How to contribute
🚀 Quick Start
Option 1: Automated NPM Setup (Recommended)
# Configure Claude Desktop/Code automatically
npx faulkner-db-config setup
# Clone and start the stack
git clone https://github.com/platano78/faulkner-db.git
cd faulkner-db/docker
docker-compose up -d
# Restart Claude Desktop/Code
Option 2: Manual Setup
1. Start FalkorDB Stack
git clone https://github.com/platano78/faulkner-db.git
cd faulkner-db/docker
# Copy environment template
cp .env.example .env
# Edit .env and set POSTGRES_PASSWORD
# Start services
docker-compose up -d
2. Configure Claude (Manual)
Add to ~/.config/Claude/claude_desktop_config.json (Linux) or equivalent:
{
"mcpServers": {
"faulkner-db": {
"command": "python3",
"args": ["-m", "mcp_server.server"],
"env": {
"PYTHONPATH": "/path/to/faulkner-db",
"FALKORDB_HOST": "localhost",
"FALKORDB_PORT": "6379"
}
}
}
}
3. Access Services
- Network Graph: http://localhost:8082/static/index.html
- Timeline View: http://localhost:8082/static/timeline.html
- Dashboard: http://localhost:8082/static/dashboard.html
- API Health: http://localhost:8082/health
- FalkorDB UI: http://localhost:8081
🏗️ Architecture
┌─────────────────────┐ ┌─────────────────────┐ ┌─────────────────────┐
│ Claude Code/ │ │ Faulkner DB │ │ FalkorDB │
│ Desktop │───▶│ (MCP Server) │───▶│ (Graph DB) │
│ │ │ Temporal Logic │ │ CPU-Friendly │
└─────────────────────┘ └─────────────────────┘ └─────────────────────┘
│ │ │
│ │ │
▼ ▼ ▼
┌─────────────────────┐ ┌─────────────────────┐ ┌─────────────────────┐
│ 7 MCP Tools │ │ Hybrid Search │ │ PostgreSQL │
│ - add_decision │ │ Graph + Vector │ │ (Metadata Store) │
│ - query_decisions │ │ + Reranking │ │ │
│ - detect_gaps │ │ │ │ │
│ - get_timeline │ │ │ │ │
└─────────────────────┘ └─────────────────────┘ └─────────────────────┘
📚 MCP Tools Documentation
1. add_decision
Record architectural decision with full context and rationale.
{
"description": "Use FalkorDB for temporal graphs",
"rationale": "CPU-friendly, Redis-compatible, excellent temporal support",
"alternatives": ["Neo4j", "ArangoDB"],
"related_to": []
}
2. query_decisions
Hybrid search for decisions by topic/timeframe.
{
"query": "authentication decisions",
"timeframe": {
"start": "2024-01-01",
"end": "2024-12-31"
}
}
3. add_pattern
Store successful implementation pattern.
{
"name": "CQRS Pattern",
"implementation": "Separate read/write models with event sourcing",
"use_cases": ["High-scale systems", "Event-driven architecture"],
"context": "Microservices with async communication"
}
4. add_failure
Document what didn't work and lessons learned.
{
"attempt": "Used RabbitMQ with 50+ queues",
"reason_failed": "Performance degradation under load",
"lesson_learned": "Use Kafka for high-throughput streaming",
"alternative_solution": "Migrated to Kafka with topic partitioning"
}
5. find_related
Graph traversal to discover related knowledge nodes.
{
"node_id": "D-abc123",
"depth": 2
}
6. detect_gaps
Run NetworkX structural analysis to identify knowledge gaps (>85% accuracy).
{}
7. get_timeline
Temporal view showing how understanding evolved over time.
{
"topic": "Authentication System",
"start_date": "2023-01-01",
"end_date": "2024-12-31"
}
🛠️ Technical Stack
| Component | Technology |
|---|---|
| Graph Database | FalkorDB (CPU-only) |
| Metadata Store | PostgreSQL |
| Embeddings | sentence-transformers (all-MiniLM-L6-v2) |
| Reranking | cross-encoder/ms-marco-MiniLM-L-6-v2 |
| Graph Analysis | NetworkX |
| MCP Server | Python 3.8+ |
| Deployment | Docker Compose |
⚡ Performance
- Query Time: <2s (hybrid search with reranking)
- Accuracy: 90%+ on decision queries
- Gap Detection: >85% accuracy
- Memory: Gaming-friendly (FalkorDB: 2GB, PostgreSQL: 1GB)
- Scalability: Tested with 10,000+ nodes
🔧 Configuration
Environment Variables
Create docker/.env from .env.example:
# FalkorDB Configuration
FALKORDB_HOST=falkordb
FALKORDB_PORT=6379
FALKORDB_MEMORY_LIMIT=2gb
# PostgreSQL Configuration
POSTGRES_HOST=postgres
POSTGRES_PORT=5432
POSTGRES_USER=graphiti
POSTGRES_PASSWORD=YOUR_SECURE_PASSWORD
POSTGRES_DB=graphiti
MCP Server Configuration
The MCP server automatically connects to FalkorDB and PostgreSQL using environment variables. No additional configuration needed.
🐛 Troubleshooting
Docker containers not starting
# Check container status
docker-compose ps
# View logs
docker-compose logs -f
# Restart services
docker-compose restart
FalkorDB connection errors
- Verify FalkorDB is running:
docker-compose ps - Check port 6379 is not in use:
lsof -i :6379 - Review FalkorDB logs:
docker-compose logs falkordb
MCP server not detected in Claude
- Verify configuration path matches your OS (see npm package docs)
- Restart Claude Desktop/Code after config changes
- Check Python path in MCP config is correct
- Ensure Docker stack is running
Data persistence issues
- Verify
docker/data/directory has correct permissions - Check
FALKORDB_PERSISTENCE=truein.env - Backup data:
docker-compose exec falkordb redis-cli BGSAVE
🤝 Contributing
We welcome contributions! Please follow these guidelines:
- Fork the repository and create a feature branch
- Write tests for new features (pytest)
- Follow code style (PEP 8 for Python)
- Document changes in code and README
- Submit pull request with clear description
Development Setup
# Clone repository
git clone https://github.com/platano78/faulkner-db.git
cd faulkner-db
# Install dependencies
pip install -r requirements.txt
# Run tests
pytest tests/ -v
# Run with coverage
pytest tests/ --cov=core --cov=mcp_server
See CONTRIBUTING.md for detailed guidelines.
📄 License
MIT License - see LICENSE for details.
🗺️ Roadmap
- [x] Phase 1: Core Knowledge Graph
- [x] Phase 2: Hybrid Search
- [x] Phase 3: Gap Detection
- [x] Phase 4: MCP Server Integration
- [x] Phase 5: Docker Deployment
- [x] Phase 6: Testing & Validation
- [ ] Phase 7: Advanced Analytics Dashboard
- [ ] Phase 8: Multi-tenant Support
- [ ] Phase 9: Cloud Deployment Options
📞 Support
- Issues: https://github.com/platano78/faulkner-db/issues
- Discussions: https://github.com/platano78/faulkner-db/discussions
- Documentation: https://github.com/platano78/faulkner-db/wiki
🙏 Acknowledgments
Built with:
- FalkorDB - Graph database with temporal support
- ChromaDB - Vector embeddings (previous iteration)
- sentence-transformers - Semantic embeddings
- NetworkX - Graph analysis algorithms
- FastMCP - MCP server framework
Made with ❤️ for software teams who value architectural knowledge
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。