FCCS MCP Agentic Server

FCCS MCP Agentic Server

Enables interaction with Oracle EPM Cloud Financial Consolidation and Close (FCCS) through 25+ tools covering REST API operations including jobs, dimensions, journals, data management, reports, and consolidation tasks.

Category
访问服务器

README

FCCS MCP Agentic Server

Oracle EPM Cloud Financial Consolidation and Close (FCCS) agentic server using Google ADK with MCP support.

Features

  • 25+ FCCS Tools: Full coverage of Oracle FCCS REST API
  • Dual Mode: MCP server (Claude Desktop) + Web API (FastAPI)
  • Memory & Feedback: PostgreSQL persistence with RL tracking
  • Mock Mode: Development without real FCCS connection
  • Bilingual: English and Portuguese support

Quick Start

Windows (Recommended)

Automated Setup:

.\setup-windows.bat

This will:

  • Create virtual environment
  • Install all dependencies
  • Create .env file from template
  • Guide you through configuration

Manual Setup:

  1. Create virtual environment: python -m venv venv
  2. Activate: .\venv\Scripts\Activate.ps1
  3. Install: pip install -e .
  4. Configure: Copy .env.example to .env and edit
  5. Initialize database: python scripts\init_db.py (if using PostgreSQL)

Quick Commands:

  • Start web server: .\start-server.bat
  • Start MCP server: .\start-mcp-server.bat
  • Install dependencies: .\install-dependencies.bat
  • Initialize database: .\init-database.bat

See WINDOWS_DEPLOYMENT.md for detailed Windows setup guide.

Linux/Mac

1. Install Dependencies:

pip install -e .

2. Configure Environment:

cp .env.example .env
# Edit .env with your settings

3. Run:

MCP Server (for Claude Desktop):

python -m cli.mcp_server

Web Server (for API access):

python -m web.server

Interactive CLI:

python -m cli.main

Claude Desktop Configuration

Add to %APPDATA%\Claude\claude_desktop_config.json:

{
  "mcpServers": {
    "fccs-agent": {
      "command": "python",
      "args": ["-m", "cli.mcp_server"],
      "cwd": "C:\\path\\to\\fccs-mcp-ag-server",
      "env": {
        "FCCS_MOCK_MODE": "true"
      }
    }
  }
}

API Endpoints

Endpoint Method Description
/ GET Health check
/tools GET List available tools
/execute POST Execute a tool
/tools/{name} POST Call specific tool
/feedback POST Submit user feedback
/metrics GET Get tool metrics

Available Tools

Application

  • get_application_info - FCCS application details
  • get_rest_api_version - API version info

Jobs

  • list_jobs - List recent jobs
  • get_job_status - Job status by ID
  • run_business_rule - Execute business rules
  • run_data_rule - Execute data load rules

Dimensions

  • get_dimensions - List all dimensions
  • get_members - Get dimension members
  • get_dimension_hierarchy - Build hierarchy tree

Journals

  • get_journals - List journals
  • get_journal_details - Journal details
  • perform_journal_action - Approve, reject, post
  • update_journal_period - Update period
  • export_journals / import_journals

Data

  • export_data_slice - Export grid data
  • smart_retrieve - Smart data retrieval
  • copy_data / clear_data

Reports

  • generate_report - Generate FCCS reports
  • get_report_job_status - Async report status

Consolidation

  • export_consolidation_rulesets / import_consolidation_rulesets
  • validate_metadata
  • generate_intercompany_matching_report
  • import_supplementation_data
  • deploy_form_template

Architecture

fccs-mcp-ag-server/
├── fccs_agent/           # Main package
│   ├── agent.py          # Agent orchestration
│   ├── config.py         # Configuration
│   ├── client/           # FCCS HTTP client
│   ├── tools/            # 25+ tool modules
│   └── services/         # Feedback service
├── cli/                  # CLI & MCP server
│   ├── main.py           # Interactive CLI
│   └── mcp_server.py     # MCP stdio server
└── web/                  # FastAPI server
    └── server.py

Deployment

Windows

See WINDOWS_DEPLOYMENT.md for complete Windows deployment guide including:

  • Prerequisites installation
  • Automated setup scripts
  • Windows Service configuration
  • Troubleshooting

Docker

docker build -t fccs-agent .
docker run -p 8080:8080 --env-file .env fccs-agent

Google Cloud Run

gcloud run deploy fccs-agent \
  --source . \
  --region us-central1 \
  --allow-unauthenticated \
  --set-env-vars FCCS_MOCK_MODE=true

See QUICK_DEPLOY.md for detailed Cloud Run deployment.

Feedback System

The agent tracks tool executions for reinforcement learning:

  • Automatic: Execution time, success/failure, errors
  • User Feedback: 1-5 rating via /feedback endpoint
  • Metrics: Aggregated stats via /metrics endpoint

Documentation

License

MIT #� �f�c�c�s�-�m�c�p�-�a�g�-�s�e�r�v�e�r� � �

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选
mcp-server-qdrant

mcp-server-qdrant

这个仓库展示了如何为向量搜索引擎 Qdrant 创建一个 MCP (Managed Control Plane) 服务器的示例。

官方
精选
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选