Featureflow MCP Server

Featureflow MCP Server

Enables AI assistants to manage Featureflow feature flags, including creating and updating features, controlling feature states across environments, and managing projects, environments, and targeting rules through natural language.

Category
访问服务器

README

Featureflow MCP Server

npm version License: MIT

An MCP (Model Context Protocol) server for Featureflow feature flag management. This enables AI assistants like Claude to interact with your Featureflow instance to manage feature flags, projects, environments, and more.

Quick Start

1. Create a Personal Access Token

  1. Log into Featureflow as an administrator
  2. Navigate to AdministrationAPI Tokens
  3. Click Create Token and copy the token (starts with api-)

2. Configure in Cursor

Add to your ~/.cursor/mcp.json:

{
  "mcpServers": {
    "featureflow": {
      "command": "npx",
      "args": ["-y", "featureflow-mcp"],
      "env": {
        "FEATUREFLOW_API_TOKEN": "api-your-token-here"
      }
    }
  }
}

3. Restart Cursor

Press Cmd+Shift+P → "MCP: Restart Servers" or restart Cursor.

That's it! You can now ask Claude to manage your feature flags.

Configuration

Environment Variable Description Default
FEATUREFLOW_API_TOKEN Personal Access Token (required) -
FEATUREFLOW_API_URL API base URL (optional) https://beta.featureflow.io/api

Self-Hosted Featureflow

If you're running a self-hosted Featureflow instance:

{
  "mcpServers": {
    "featureflow": {
      "command": "npx",
      "args": ["-y", "featureflow-mcp"],
      "env": {
        "FEATUREFLOW_API_URL": "https://your-instance.com/api",
        "FEATUREFLOW_API_TOKEN": "api-your-token-here"
      }
    }
  }
}

Available Tools

Account

Tool Description
get_current_user Get the currently authenticated user and organization

Projects

Tool Description
list_projects List all projects, optionally filtered by query
get_project Get a specific project by ID or key
create_project Create a new project
update_project Update an existing project
delete_project Delete a project

Features

Tool Description
list_features List features with optional filters
get_feature Get a specific feature by ID or unified key
create_feature Create a new feature flag
update_feature Update an existing feature
clone_feature Clone a feature with a new key
archive_feature Archive or unarchive a feature
delete_feature Delete a feature

Feature Controls

Tool Description
get_feature_control Get feature control settings for an environment
update_feature_control Enable/disable features, modify rules

Environments

Tool Description
list_environments List environments for a project
get_environment Get a specific environment
create_environment Create a new environment
update_environment Update an existing environment
delete_environment Delete an environment

Targets & API Keys

Tool Description
list_targets List targeting attributes for a project
get_target Get a specific target by key
list_api_keys List SDK API keys for an environment

Example Usage

Once configured, you can ask Claude things like:

  • "Who am I logged in as in Featureflow?"
  • "List all my Featureflow projects"
  • "Create a feature called 'new-checkout' in the 'webapp' project"
  • "Enable the 'dark-mode' feature in production"
  • "What features are currently enabled in staging?"
  • "Disable 'beta-feature' in all environments"

Development

# Clone the repository
git clone https://github.com/featureflow/featureflow-mcp.git
cd featureflow-mcp

# Install dependencies
npm install

# Build
npm run build

# Run locally
FEATUREFLOW_API_TOKEN=api-xxx npm start

License

MIT - see LICENSE for details.

Links

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选