Featureflow MCP Server
Enables AI assistants to manage Featureflow feature flags, including creating and updating features, controlling feature states across environments, and managing projects, environments, and targeting rules through natural language.
README
Featureflow MCP Server
An MCP (Model Context Protocol) server for Featureflow feature flag management. This enables AI assistants like Claude to interact with your Featureflow instance to manage feature flags, projects, environments, and more.
Quick Start
1. Create a Personal Access Token
- Log into Featureflow as an administrator
- Navigate to Administration → API Tokens
- Click Create Token and copy the token (starts with
api-)
2. Configure in Cursor
Add to your ~/.cursor/mcp.json:
{
"mcpServers": {
"featureflow": {
"command": "npx",
"args": ["-y", "featureflow-mcp"],
"env": {
"FEATUREFLOW_API_TOKEN": "api-your-token-here"
}
}
}
}
3. Restart Cursor
Press Cmd+Shift+P → "MCP: Restart Servers" or restart Cursor.
That's it! You can now ask Claude to manage your feature flags.
Configuration
| Environment Variable | Description | Default |
|---|---|---|
FEATUREFLOW_API_TOKEN |
Personal Access Token (required) | - |
FEATUREFLOW_API_URL |
API base URL (optional) | https://beta.featureflow.io/api |
Self-Hosted Featureflow
If you're running a self-hosted Featureflow instance:
{
"mcpServers": {
"featureflow": {
"command": "npx",
"args": ["-y", "featureflow-mcp"],
"env": {
"FEATUREFLOW_API_URL": "https://your-instance.com/api",
"FEATUREFLOW_API_TOKEN": "api-your-token-here"
}
}
}
}
Available Tools
Account
| Tool | Description |
|---|---|
get_current_user |
Get the currently authenticated user and organization |
Projects
| Tool | Description |
|---|---|
list_projects |
List all projects, optionally filtered by query |
get_project |
Get a specific project by ID or key |
create_project |
Create a new project |
update_project |
Update an existing project |
delete_project |
Delete a project |
Features
| Tool | Description |
|---|---|
list_features |
List features with optional filters |
get_feature |
Get a specific feature by ID or unified key |
create_feature |
Create a new feature flag |
update_feature |
Update an existing feature |
clone_feature |
Clone a feature with a new key |
archive_feature |
Archive or unarchive a feature |
delete_feature |
Delete a feature |
Feature Controls
| Tool | Description |
|---|---|
get_feature_control |
Get feature control settings for an environment |
update_feature_control |
Enable/disable features, modify rules |
Environments
| Tool | Description |
|---|---|
list_environments |
List environments for a project |
get_environment |
Get a specific environment |
create_environment |
Create a new environment |
update_environment |
Update an existing environment |
delete_environment |
Delete an environment |
Targets & API Keys
| Tool | Description |
|---|---|
list_targets |
List targeting attributes for a project |
get_target |
Get a specific target by key |
list_api_keys |
List SDK API keys for an environment |
Example Usage
Once configured, you can ask Claude things like:
- "Who am I logged in as in Featureflow?"
- "List all my Featureflow projects"
- "Create a feature called 'new-checkout' in the 'webapp' project"
- "Enable the 'dark-mode' feature in production"
- "What features are currently enabled in staging?"
- "Disable 'beta-feature' in all environments"
Development
# Clone the repository
git clone https://github.com/featureflow/featureflow-mcp.git
cd featureflow-mcp
# Install dependencies
npm install
# Build
npm run build
# Run locally
FEATUREFLOW_API_TOKEN=api-xxx npm start
License
MIT - see LICENSE for details.
Links
- Featureflow - Feature flag management platform
- MCP Protocol - Model Context Protocol specification
- Featureflow Documentation - API documentation
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。