Federal Reserve Economic Data (FRED) MCP Server

Federal Reserve Economic Data (FRED) MCP Server

Provides access to over 800,000 economic time series from the Federal Reserve, allowing users to browse, search, and retrieve data for indicators like GDP and unemployment. It supports custom date ranges and data transformations such as percentage changes or frequency aggregations.

Category
访问服务器

README

Federal Reserve Economic Data MCP Server

smithery badge npm version DOI License: AGPL v3 Tests

[!IMPORTANT] Disclaimer: This open-source project is not affiliated with, sponsored by, or endorsed by the Federal Reserve or the Federal Reserve Bank of St. Louis. "FRED" is a registered trademark of the Federal Reserve Bank of St. Louis, used here for descriptive purposes only.

A Model Context Protocol (MCP) server providing universal access to all 800,000+ Federal Reserve Economic Data (FRED®) time series through three powerful tools.

https://github.com/user-attachments/assets/66c7f3ad-7b0e-4930-b1c5-a675a7eb1e09

[!TIP] If you use this project in your research or work, please cite it using the CITATION.cff file, or use the following citation:

APA Format:

Amorelli, S. (2025). Federal Reserve Economic Data MCP (Model Context Protocol) Server (Version 1.0.2) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.14536707

BibTeX:

@software{amorelli_2025_14536707,
  author       = {Amorelli, Stefano},
  title        = {{Federal Reserve Economic Data MCP (Model Context
                   Protocol) Server}},
  month        = jan,
  year         = 2025,
  publisher    = {Zenodo},
  version      = {1.0.2},
  doi          = {10.5281/zenodo.14536707},
  url          = {https://doi.org/10.5281/zenodo.14536707}
}

Installation

Installing via Smithery

To install Federal Reserve Economic Data Server for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @stefanoamorelli/fred-mcp-server --client claude

Manual Installation

  1. Clone the repository:
    git clone https://github.com/stefanoamorelli/fred-mcp-server.git
    cd fred-mcp-server
    
  2. Install dependencies:
    pnpm install
    
  3. Build the project:
    pnpm build
    

Configuration

This server requires a FRED® API key. You can obtain one from the FRED® website.

Install the server, for example, on Claude Desktop, modify the claude_desktop_config.json file and add the following configuration:

{
  "mcpServers": {
    "FRED MCP Server": {
      "command": "/usr/bin/node",
      "args": [
        "<PATH_TO_YOUR_CLONED_REPO>/fred-mcp-server/build/index.js"
      ],
      "env": {
        "FRED_API_KEY": "<YOUR_API_KEY>"
      }
    }
  }
}

Using Docker

You can also run the FRED MCP Server using Docker. Add this configuration to your claude_desktop_config.json:

{
  "mcpServers": {
    "fred-mcp": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "-e",
        "FRED_API_KEY=<your-key-here>",
        "stefanoamorelli/fred-mcp-server:latest"
      ],
      "env": {}
    }
  }
}

Replace <your-key-here> with your actual FRED API key.

Available Tools

This MCP server provides three comprehensive tools to access all 800,000+ FRED® economic data series:

fred_browse

Description: Browse FRED's complete catalog through categories, releases, or sources.

Parameters:

  • browse_type (required): Type of browsing - "categories", "releases", "sources", "category_series", "release_series"
  • category_id (optional): Category ID for browsing subcategories or series within a category
  • release_id (optional): Release ID for browsing series within a release
  • limit (optional): Maximum number of results (default: 50)
  • offset (optional): Number of results to skip for pagination
  • order_by (optional): Field to order results by
  • sort_order (optional): "asc" or "desc"

fred_search

Description: Search for FRED economic data series by keywords, tags, or filters.

Parameters:

  • search_text (optional): Text to search for in series titles and descriptions
  • search_type (optional): "full_text" or "series_id"
  • tag_names (optional): Comma-separated list of tag names to filter by
  • exclude_tag_names (optional): Comma-separated list of tag names to exclude
  • limit (optional): Maximum number of results (default: 25)
  • offset (optional): Number of results to skip for pagination
  • order_by (optional): Field to order by (e.g., "popularity", "last_updated")
  • sort_order (optional): "asc" or "desc"
  • filter_variable (optional): Filter by "frequency", "units", or "seasonal_adjustment"
  • filter_value (optional): Value to filter the variable by

fred_get_series

Description: Retrieve data for any FRED series by its ID with support for transformations and date ranges.

Parameters:

  • series_id (required): The FRED series ID (e.g., "GDP", "UNRATE", "CPIAUCSL")
  • observation_start (optional): Start date in YYYY-MM-DD format
  • observation_end (optional): End date in YYYY-MM-DD format
  • limit (optional): Maximum number of observations
  • offset (optional): Number of observations to skip
  • sort_order (optional): "asc" or "desc"
  • units (optional): Data transformation:
    • "lin" (levels/no transformation)
    • "chg" (change from previous period)
    • "ch1" (change from year ago)
    • "pch" (percent change)
    • "pc1" (percent change from year ago)
    • "pca" (compounded annual rate of change)
    • "cch" (continuously compounded rate of change)
    • "log" (natural log)
  • frequency (optional): Frequency aggregation ("d", "w", "m", "q", "a")
  • aggregation_method (optional): "avg" (average), "sum", or "eop" (end of period)

Example Usage

With these three tools, you can:

  • Browse all economic categories and discover available data
  • Search for specific indicators by keywords or tags
  • Retrieve any of the 800,000+ series with custom transformations
  • Access real-time economic data including GDP, unemployment, inflation, interest rates, and more

Social Media Shoutouts 📣

[!NOTE] Want to be featured? Tag Stefano Amorelli on LinkedIn or @stefanoamorelli on X in your post about using FRED MCP Server, or submit a PR to add your shoutout!

We're grateful for the community support! Here are some mentions from amazing people:

<details open> <summary><b>Scott G</b> - "One of my breakthrough moments for 'getting' what is possible with Claude was this fred-mcp-server project..."</summary> <br> <a href="https://www.linkedin.com/posts/sgoley_as-many-of-us-continue-to-use-llms-more-and-activity-7372401049669885952-ha6M"> <img src="assets/social/linkedin-sgoley.jpg" alt="LinkedIn post by Scott G - Fintech & Data Analytics Professional" width="600"> </a> <br> <i>Scott G - Fintech & Data Analytics Professional</i> | <a href="https://www.linkedin.com/in/sgoley/">LinkedIn Profile</a> </details>

<details open> <summary><b>John Shelburne</b> - "The FRED MCP Server is a game-changer for financial analysis..."</summary> <br> <a href="https://www.linkedin.com/posts/shelburne_ai-finance-innovation-activity-7341141860880478210-JQe4"> <img src="assets/social/linkedin-john-shelburne.jpg" alt="LinkedIn post by John Shelburne" width="600"> </a> <br> <i>John Shelburne - Fixed Income Fintech Leader with 20+ Years of Experience | Machine Learning & Cloud Computing Specialist</i> | <a href="https://www.linkedin.com/in/shelburne/">LinkedIn Profile</a> </details>

<!-- Add more social media posts here using the format above -->

Testing

See TESTING.md for more details.

# Run all tests
pnpm test

# Run specific tests
pnpm test:registry

License ⚖️

This open-source project is licensed under the GNU Affero General Public License v3.0 (AGPL-3.0). This means:

  • You can use, modify, and distribute this software
  • If you modify and distribute it, you must release your changes under AGPL-3.0
  • If you run a modified version on a server, you must provide the source code to users
  • See the LICENSE file for full details

For commercial licensing options or other licensing inquiries, please contact stefano@amorelli.tech.

© 2025 Stefano Amorelli

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选
Federal Reserve Economic Data (FRED) MCP Server