feedback-loop-mcp

feedback-loop-mcp

feedback-loop-mcp

Category
访问服务器

README

Feedback Loop MCP

Simple MCP Server to enable a human-in-the-loop workflow in AI-assisted development tools like Cursor. This server allows you to run commands, view their output, and provide textual feedback directly to the AI. It is also compatible with Cline and Windsurf.

Inspiration: This project is inspired by interactive-feedback-mcp by Fábio Ferreira (@fabiomlferreira).

Features

  • Cross-platform: Works on macOS, Windows, and Linux
  • Interactive UI: Modern, responsive interface for collecting feedback
  • Settings persistence: Save and restore UI preferences per project
  • MCP integration: Seamlessly integrates with MCP-compatible AI assistants
  • macOS overlay support: Native overlay window support on macOS

Screenshot

Feedback Loop MCP Interface

The feedback collection interface with macOS vibrancy effects

Installation

Quick Start with npx (Recommended)

The easiest way to use this MCP server is via npx:

npx feedback-loop-mcp

Global Installation

For frequent use, install globally:

npm install -g feedback-loop-mcp
feedback-loop-mcp

Local Development Setup

For development or customization:

  1. Clone the repository:

    git clone <repository-url>
    cd feedback-loop-mcp
    
  2. Install dependencies:

    npm install
    
  3. Run in development mode:

    npm run dev
    

MCP Server Configuration

Cursor IDE

Add the following configuration to your Cursor settings (mcp.json):

{
  "mcpServers": {
    "feedback-loop-mcp": {
      "command": "npx",
      "args": ["feedback-loop-mcp"],
      "timeout": 600,
      "autoApprove": [
        "feedback_loop"
      ]
    }
  }
}

Cline / Windsurf

Similar setup principles apply. Configure the server command in your MCP settings:

{
  "mcpServers": {
    "feedback-loop-mcp": {
      "command": "npx",
      "args": ["feedback-loop-mcp"]
    }
  }
}

Claude Desktop

Add to your Claude Desktop configuration:

{
  "mcpServers": {
    "feedback-loop-mcp": {
      "command": "npx",
      "args": ["feedback-loop-mcp"]
    }
  }
}

Usage

Running the Server

Via npx (Recommended)

npx feedback-loop-mcp

Via Global Installation

feedback-loop-mcp

Local Development

npm start

Command Line Arguments

The application accepts the following command-line arguments:

  • --project-directory <path>: Set the project directory
  • --prompt <text>: Set the initial prompt/summary text

Example:

npm start -- --project-directory "/path/to/project" --prompt "Please review this code"

Available Tools

The MCP server provides the following tool:

  • feedback_loop: Displays a UI for collecting user feedback and returns the response

Example usage in AI assistants:

{
  "tool_name": "feedback_loop",
  "arguments": {
    "project_directory": "/path/to/your/project",
    "summary": "I've implemented the changes you requested and refactored the main module."
  }
}

Prompt Engineering

For the best results, add the following to your custom prompt in your AI assistant:

Whenever you want to ask a question, always call the MCP feedback_loop tool.
Whenever you're about to complete a user request, call the MCP feedback_loop tool instead of simply ending the process.
Keep calling the feedback_loop tool until the user's feedback is empty, then end the request.

This ensures your AI assistant uses this MCP server to request user feedback before marking tasks as completed.

Benefits

By guiding the assistant to check in with the user instead of branching out into speculative, high-cost tool calls, this module can drastically reduce the number of premium requests (e.g., OpenAI tool invocations) on platforms like Cursor. In some cases, it helps consolidate what would be up to 25 tool calls into a single, feedback-aware request — saving resources and improving performance.

Built applications will be available in the dist directory.

Project Structure

feedback-loop-mcp/
├── main.js              # Main Electron process
├── preload.js           # Preload script for secure IPC
├── package.json         # Project configuration
├── README.md           # This file
├── assets/             # Static assets
│   └── feedback.png    # Application icon
├── renderer/           # Renderer process files
│   ├── index.html      # Main UI
│   ├── styles.css      # Styling
│   └── renderer.js     # UI logic
└── server/             # MCP server
    └── mcp-server.js   # Node.js MCP server

Configuration

The application automatically saves settings using Electron's built-in storage:

  • General settings: Window size, position, and UI preferences
  • Project-specific settings: Command history and project-specific configurations

Settings are stored in the standard application data directory for each platform.

Features Overview

Feedback Collection

  • Rich text feedback input
  • Automatic saving of feedback
  • JSON output format for easy integration
  • Timestamp and project information included

Development

For development and build information, see DEVELOPMENT.md.

Troubleshooting

Common Issues

  1. MCP server not connecting: Ensure the server is running and the configuration is correct
  2. npx command not found: Make sure Node.js and npm are properly installed
  3. Permission errors: On Unix systems, you may need to make the binary executable

Debug Mode

Run with debug output:

DEBUG=* npx feedback-loop-mcp

License

MIT License - see package.json for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选