Feedbucket MCP Server
Enables AI assistants to manage website feedback from Feedbucket, including listing, filtering, commenting on, and resolving feedback items through natural language interactions.
README
Feedbucket MCP Server
A Model Context Protocol (MCP) server that lets AI assistants (Claude Code, Cursor) manage website feedback from Feedbucket.
Beta Software: This project is in beta. Use at your own risk. Please report issues on GitHub.
Prerequisites
Before installing this MCP server, make sure you have:
- A Feedbucket account
- Feedbucket installed on your website
- Protected mode enabled (recommended):
- Go to Widget Settings
- Set "Trigger Feedbucket using a query string" to Yes
- Save settings and copy your secret key
Quick Start
1. Install from npm
npm install -g feedbucket-mcp
2. Run the setup wizard
# For protected projects:
feedbucket-setup https://your-website.com YOUR_FEEDBUCKET_SECRET
# For public projects:
feedbucket-setup https://your-website.com
The setup script automatically:
- Extracts the project ID from your website HTML
- Fetches the private key from Feedbucket API
- Configures Claude Code and Cursor
3. Restart your IDE
Restart Claude Code or Cursor to load the new MCP server.
4. Start using it
Ask your AI assistant:
- "Show me unresolved feedback from Feedbucket"
- "What's the feedback summary for this project?"
- "Add a comment to feedback #12345 saying we've fixed this"
Alternative: Clone from GitHub
If you prefer to clone the repository:
git clone https://github.com/swiftcomza/feedbucket-mcp.git
cd feedbucket-mcp
npm install && npm run build
npm run setup -- https://your-website.com YOUR_FEEDBUCKET_SECRET
Available Tools
| Tool | Description |
|---|---|
feedback_list |
List and filter feedback with smart summarization |
feedback_get |
Get full details of a specific feedback item |
feedback_stats |
Quick project overview (total, resolved, by type, recent activity) |
feedback_comment |
Add comments to feedback items |
feedback_resolve |
Mark feedback as resolved |
api_status |
Check API connection status |
feedback_list
List feedback with powerful filtering:
Parameters:
- resolved (boolean): Filter by resolution status
- limit (number): Items to retrieve (default: 10, max: 50)
- offset (number): Skip items for pagination
- summary (boolean): Return condensed format (default: true)
- page_filter (string): Filter by page URL (partial match)
- reporter_filter (string): Filter by reporter name
- feedback_type (string): 'screenshot', 'video', or 'text'
- created_after (string): ISO date filter
feedback_get
Get complete details for a single feedback item:
Parameters:
- feedback_id (number, required): The feedback ID
Returns full text, all comments, attachments, browser/device info, and console logs.
feedback_stats
Get a quick project health overview:
Returns:
- Total feedback count
- Resolved vs unresolved breakdown
- Feedback by type (screenshot/video/text)
- Recent activity (7 days, 30 days)
- Top 5 pages with most feedback
feedback_comment
Add a comment to a feedback item:
Parameters:
- feedback_id (number, required): The feedback ID
- comment (string, required): Comment text
- reporter_name (string): Defaults to "Claude AI Assistant"
- reporter_email (string): Defaults to "claude@anthropic.com"
- resolve (boolean): Also resolve the feedback (default: false)
feedback_resolve
Mark a feedback item as resolved:
Parameters:
- feedback_id (number, required): The feedback ID
Setup Options
Automatic Setup (recommended)
# Protected project - provide URL and secret
npm run setup -- https://your-website.com YOUR_SECRET
# Public project - just the URL
npm run setup -- https://your-website.com
Manual Project ID (if auto-detection fails)
# With project ID only (public)
npm run setup -- --project-id tMbUCuQ4FeFJVViMEPlb
# With project ID and API key (protected)
npm run setup -- --project-id tMbUCuQ4FeFJVViMEPlb --api-key YOUR_SECRET
Configure only one IDE
# Claude Code only
npm run setup -- https://your-website.com YOUR_SECRET --claude
# Cursor only
npm run setup -- https://your-website.com YOUR_SECRET --cursor
Extract credentials without configuring
npm run setup -- https://your-website.com YOUR_SECRET --extract
Full help
npm run setup -- --help
Manual Configuration
If you prefer to configure manually:
Claude Code
Add to .mcp.json in your project root:
{
"mcpServers": {
"feedbucket": {
"command": "node",
"args": ["/path/to/feedbucket-mcp/dist/index.js"],
"env": {
"FEEDBUCKET_PROJECT_ID": "your-project-id",
"FEEDBUCKET_PRIVATE_KEY": "your-private-key",
"FEEDBUCKET_API_KEY": "your-api-key"
}
}
}
}
Or use the CLI:
claude mcp add feedbucket \
-e FEEDBUCKET_PROJECT_ID="your-project-id" \
-e FEEDBUCKET_PRIVATE_KEY="your-private-key" \
-e FEEDBUCKET_API_KEY="your-api-key" \
-- node /path/to/feedbucket-mcp/dist/index.js
Cursor
Add to .cursor/mcp.json in your project root:
{
"mcpServers": {
"feedbucket": {
"command": "node",
"args": ["/path/to/feedbucket-mcp/dist/index.js"],
"env": {
"FEEDBUCKET_PROJECT_ID": "your-project-id",
"FEEDBUCKET_PRIVATE_KEY": "your-private-key",
"FEEDBUCKET_API_KEY": "your-api-key"
}
}
}
}
Environment Variables
| Variable | Required | Description |
|---|---|---|
FEEDBUCKET_PROJECT_ID |
Yes | Project ID from the data-feedbucket attribute |
FEEDBUCKET_PRIVATE_KEY |
Yes | Private key for commenting/resolving (auto-fetched by setup) |
FEEDBUCKET_API_KEY |
No* | API key for protected projects (feedbucketKey from URL) |
*Required if your project uses query string protection.
Development
# Install dependencies
npm install
# Development mode (with hot reload)
npm run dev
# Type checking
npm run typecheck
# Linting
npm run lint
# Build for production
npm run build
Architecture
This MCP server was reverse-engineered from the Feedbucket browser widget to provide:
- Smart Summarization: Optimizes large datasets for AI consumption
- Client-side Filtering: Reduces API calls by filtering locally
- Full TypeScript: Strict mode with comprehensive types
- Production Ready: Proper error handling and validation
API Endpoints Used
| Method | Endpoint | Purpose |
|---|---|---|
| GET | /projects/{id} |
Fetch project with all feedback |
| POST | /feedback/{id}/comments |
Add comment to feedback |
| PUT | /feedback/{id}/resolve |
Mark feedback as resolved |
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。