FEL MCP Server (Local)
Enables validation and PDF rendering of Guatemalan FEL invoices from XML files. Supports single file processing and batch operations with branded PDF output for local tax compliance workflows.
README
FEL MCP Server (Local)
Local Model Context Protocol (MCP) server for Guatemalan FEL invoices.
Exposes tools to validate FEL XML and render branded PDFs. Designed for WSL (Ubuntu) or Linux and can be consumed by MCP hosts (e.g., Claude Desktop).
This repository focuses on the FEL MCP server. It’s often used alongside a chatbot client; see “Related repositories”.
🔗 Related repositories
- Chatbot (CLI / UI) — client that can drive this MCP server.
- Reference: OpenAI Chat API Example — reference only (patterns for API connectivity and instruction context).
✨ Tools (MCP)
-
fel_validate
required:xml_path(absolute WSL path)
Checks required fields and totals (subtotal, VAT 12%, total). -
fel_render
required:xml_path,out_path(absolute WSL paths)
Renders a branded PDF from the FEL XML. -
fel_batch
required:dir_xml,out_dir(absolute WSL paths)
Processes all*.xmlindir_xml, produces one PDF per XML inout_dir, and writesmanifest.json.
Use absolute WSL paths like
/mnt/d/...in all arguments and environment variables.
⚙️ Requirements
- Python 3.12
- WSL Ubuntu 22.04 (or Linux)
- Virtual environment (recommended)
🔧 Installation
git clone <REPO_URL>
cd <REPO_DIR>
python3.12 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
Create your environment file (use absolute WSL paths):
cp .env.example .env
Key variables used by the server (placeholders shown):
# I/O
FEL_XML_PATH=/ABSOLUTE/PATH/TO/REPO/data/xml/factura.xml
FEL_OUTPUT_PDF=/ABSOLUTE/PATH/TO/REPO/data/out/factura.pdf
FEL_BATCH_OUT_DIR=/ABSOLUTE/PATH/TO/REPO/data/out
# optional logo
FEL_LOGO_PATH=/ABSOLUTE/PATH/TO/REPO/data/logos/logo.jpg
# Fonts
FEL_ACTIVE_FONT=1
FEL_FONT_DIR_MONTSERRAT=/ABSOLUTE/PATH/TO/REPO/assets/fonts/Montserrat/static
FEL_FONT_DIR_ROBOTOMONO=/ABSOLUTE/PATH/TO/REPO/assets/fonts/Roboto_Mono/static
# Theme/Layout
FEL_THEME=light
FEL_QR_SIZE=150
FEL_TOP_BAR_HEIGHT=20
▶️ Run the server (STDIO)
source venv/bin/activate
python servers/fel_mcp_server/server_stdio.py
🧪 Quick CLI tests (JSON-RPC over stdin)
List tools:
printf '%s\n' \
'{"jsonrpc":"2.0","id":1,"method":"initialize","params":{}}' \
'{"jsonrpc":"2.0","id":2,"method":"tools/list"}' \
| python servers/fel_mcp_server/server_stdio.py
Validate one XML:
printf '%s\n' \
'{"jsonrpc":"2.0","id":1,"method":"initialize","params":{}}' \
'{"jsonrpc":"2.0","id":2,"method":"tools/call","params":{"name":"fel_validate","arguments":{"xml_path":"/ABSOLUTE/PATH/TO/REPO/data/xml/factura.xml"}}}' \
| python servers/fel_mcp_server/server_stdio.py
Render one PDF (no logo):
printf '%s\n' \
'{"jsonrpc":"2.0","id":1,"method":"initialize","params":{}}' \
'{"jsonrpc":"2.0","id":2,"method":"tools/call","params":{"name":"fel_render","arguments":{"xml_path":"/ABSOLUTE/PATH/TO/REPO/data/xml/factura.xml","out_path":"/ABSOLUTE/PATH/TO/REPO/data/out/testing.pdf"}}}' \
| python servers/fel_mcp_server/server_stdio.py
Batch:
printf '%s\n' \
'{"jsonrpc":"2.0","id":1,"method":"initialize","params":{}}' \
'{"jsonrpc":"2.0","id":2,"method":"tools/call","params":{"name":"fel_batch","arguments":{"dir_xml":"/ABSOLUTE/PATH/TO/REPO/data/xml","out_dir":"/ABSOLUTE/PATH/TO/REPO/data/out/batch"}}}' \
| python servers/fel_mcp_server/server_stdio.py
🖥️ Use with Claude Desktop (MCP)
-
Install Claude Desktop: https://claude.ai/download
-
Open Settings -> Developer -> Edit Config, then edit
claude_desktop_config.json:{ "mcpServers": { "FEL": { "command": "wsl.exe", "args": [ "-e", "/ABSOLUTE/PATH/TO/REPO/venv/bin/python", "/ABSOLUTE/PATH/TO/REPO/servers/fel_mcp_server/server_stdio.py" ] } } }- Use absolute WSL paths in
args. - If the host logs show errors like
"'xml_path'", it means the call was sent without arguments; re-run with a prompt that includes the exact JSON arguments block.
- Use absolute WSL paths in
-
Restart Claude Desktop (PowerShell):
Stop-Process -Name "Claude" -Force; Start-Process "<ABSOLUTE_WINDOWS_PATH_TO_Claude.exe>"
📚 References
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。