Fetch MCP Server
Enables fetching and processing web content by retrieving URLs and converting HTML to markdown format. Supports chunked reading of webpages and both local (stdio) and HTTP transport modes with optional authentication.
README
Fetch MCP Server
A Model Context Protocol server that provides web content fetching capabilities. This server enables LLMs to retrieve and process content from web pages, converting HTML to markdown for easier consumption.
[!CAUTION] This server can access local/internal IP addresses and may represent a security risk. Exercise caution when using this MCP server to ensure this does not expose any sensitive data.
The fetch tool will truncate the response, but by using the start_index argument, you can specify where to start the content extraction. This lets models read a webpage in chunks, until they find the information they need.
Available Tools
fetch- Fetches a URL from the internet and extracts its contents as markdown.url(string, required): URL to fetchmax_length(integer, optional): Maximum number of characters to return (default: 5000)start_index(integer, optional): Start content from this character index (default: 0)raw(boolean, optional): Get raw content without markdown conversion (default: false)
Transport Modes
This server supports two transport modes:
- stdio (default): Standard input/output for local process communication
- http: HTTP-based transport using Streamable HTTP protocol with optional Bearer token authentication
Prompts
- fetch
- Fetch a URL and extract its contents as markdown
- Arguments:
url(string, required): URL to fetch
Installation
Optionally: Install node.js, this will cause the fetch server to use a different HTML simplifier that is more robust.
Using uv (recommended)
When using uv no specific installation is needed. We will
use uvx to directly run mcp-server-fetch.
Using PIP
Alternatively you can install mcp-server-fetch via pip:
pip install mcp-server-fetch
After installation, you can run it as a script using:
python -m mcp_server_fetch
Configuration
Running with HTTP Transport
To run the server with HTTP transport (Streamable HTTP protocol):
# Basic HTTP server (no authentication)
python -m mcp_server_fetch --transport http --port 8000
# With Bearer token authentication
python -m mcp_server_fetch --transport http --port 8000 --auth-token your-secret-token
# With custom host and port
python -m mcp_server_fetch --transport http --host 0.0.0.0 --port 3000 --auth-token your-secret-token
When using HTTP transport with authentication, clients must include the Bearer token in the Authorization header:
Authorization: Bearer your-secret-token
Security Note: When exposing the HTTP server beyond localhost, always use --auth-token to protect your server.
Configure for Claude.app
Add to your Claude settings:
<details> <summary>Using uvx</summary>
{
"mcpServers": {
"fetch": {
"command": "uvx",
"args": ["mcp-server-fetch"]
}
}
}
</details>
<details> <summary>Using docker</summary>
{
"mcpServers": {
"fetch": {
"command": "docker",
"args": ["run", "-i", "--rm", "mcp/fetch"]
}
}
}
</details>
<details> <summary>Using pip installation</summary>
{
"mcpServers": {
"fetch": {
"command": "python",
"args": ["-m", "mcp_server_fetch"]
}
}
}
</details>
Configure for VS Code
For quick installation, use one of the one-click install buttons below...
For manual installation, add the following JSON block to your User Settings (JSON) file in VS Code. You can do this by pressing Ctrl + Shift + P and typing Preferences: Open User Settings (JSON).
Optionally, you can add it to a file called .vscode/mcp.json in your workspace. This will allow you to share the configuration with others.
Note that the
mcpkey is needed when using themcp.jsonfile.
<details> <summary>Using uvx</summary>
{
"mcp": {
"servers": {
"fetch": {
"command": "uvx",
"args": ["mcp-server-fetch"]
}
}
}
}
</details>
<details> <summary>Using Docker</summary>
{
"mcp": {
"servers": {
"fetch": {
"command": "docker",
"args": ["run", "-i", "--rm", "mcp/fetch"]
}
}
}
}
</details>
Configure for HTTP Transport
When using HTTP transport, configure your MCP client to connect to the HTTP endpoint:
{
"mcpServers": {
"fetch": {
"url": "http://localhost:8000",
"transport": "http"
}
}
}
If using Bearer token authentication:
{
"mcpServers": {
"fetch": {
"url": "http://localhost:8000",
"transport": "http",
"headers": {
"Authorization": "Bearer your-secret-token"
}
}
}
}
Customization - User-agent
By default, depending on if the request came from the model (via a tool), or was user initiated (via a prompt), the server will use either the user-agent
ModelContextProtocol/1.0 (Autonomous; +https://github.com/modelcontextprotocol/servers)
or
ModelContextProtocol/1.0 (User-Specified; +https://github.com/modelcontextprotocol/servers)
This can be customized by adding the argument --user-agent=YourUserAgent to the args list in the configuration.
Customization - Proxy
The server can be configured to use a proxy by using the --proxy-url argument.
Windows Configuration
If you're experiencing timeout issues on Windows, you may need to set the PYTHONIOENCODING environment variable to ensure proper character encoding:
<details> <summary>Windows configuration (uvx)</summary>
{
"mcpServers": {
"fetch": {
"command": "uvx",
"args": ["mcp-server-fetch"],
"env": {
"PYTHONIOENCODING": "utf-8"
}
}
}
}
</details>
<details> <summary>Windows configuration (pip)</summary>
{
"mcpServers": {
"fetch": {
"command": "python",
"args": ["-m", "mcp_server_fetch"],
"env": {
"PYTHONIOENCODING": "utf-8"
}
}
}
}
</details>
This addresses character encoding issues that can cause the server to timeout on Windows systems.
Debugging
You can use the MCP inspector to debug the server. For uvx installations:
npx @modelcontextprotocol/inspector uvx mcp-server-fetch
Or if you've installed the package in a specific directory or are developing on it:
cd path/to/servers/src/fetch
npx @modelcontextprotocol/inspector uv run mcp-server-fetch
Contributing
We encourage contributions to help expand and improve mcp-server-fetch. Whether you want to add new tools, enhance existing functionality, or improve documentation, your input is valuable.
For examples of other MCP servers and implementation patterns, see: https://github.com/modelcontextprotocol/servers
Pull requests are welcome! Feel free to contribute new ideas, bug fixes, or enhancements to make mcp-server-fetch even more powerful and useful.
License
mcp-server-fetch is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License. For more details, please see the LICENSE file in the project repository.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。