Figma MCP Server
A Python implementation of the Model Context Protocol server that enables AI assistants to interact with Figma through WebSocket connections, allowing them to read, analyze, and export design data.
README
Figma MCP Server (Python)
Figma Model Context Protocol (MCP) server, реализованный на Python с использованием FastMCP. Этот сервер позволяет AI ассистентам взаимодействовать с Figma через WebSocket соединение для чтения данных и анализа дизайнов.
🎯 Возможности
- 📖 Чтение данных: Получение информации о документах, узлах, компонентах и стилях
- 🔍 Поиск и анализ: Сканирование узлов по типам, поиск текстового контента
- 📤 Экспорт: Экспорт узлов как изображений в различных форматах
- 📋 Аннотации: Просмотр аннотаций в документах
- 🧩 Компоненты: Работа с компонентами и их экземплярами
- 🔗 Прототипирование: Получение информации о реакциях и связях
🚫 Ограничения
Для безопасности этот сервер НЕ поддерживает:
- Создание новых элементов
- Изменение стилей, цветов или текста (инструменты
set_*) - Операции изменения узлов (перемещение, изменение размера, удаление, клонирование)
📋 Доступные инструменты (14 шт.)
🔗 Подключение
join_channel- Присоединиться к каналу для связи с Figma
📖 Получение информации
get_document_info- Получить информацию о текущем документе Figmaget_selection- Получить информацию о текущем выделенииread_my_design- Получить детальную информацию о выделении включая все детали узловget_node_info- Получить информацию о конкретном узле по IDget_nodes_info- Получить информацию о нескольких узлахget_styles- Получить все стили из документаget_local_components- Получить все локальные компоненты
🧩 Компоненты
get_instance_overrides- Получить переопределения экземпляра компонента
🔍 Поиск и сканирование
scan_text_nodes- Сканировать текстовые узлы внутри заданного узлаscan_nodes_by_types- Сканировать узлы определенных типов (TEXT, RECTANGLE, FRAME)
📤 Экспорт
export_node_as_image- Экспортировать узел как изображение (PNG, JPG, SVG, PDF)
📋 Аннотации
get_annotations- Получить аннотации для узла или всего документа
🔗 Прототипирование
get_reactions- Получить реакции (интерактивные связи) для узлов
🏗️ Архитектура
AI Client (Cursor) ←→ MCP Server ←→ WebSocket Server ←→ Figma Plugin
- MCP Server - Предоставляет инструменты для AI
- WebSocket Server - Координирует соединения и каналы
- Figma Plugin - Выполняет команды в Figma
🚀 Быстрый старт
1. Установка зависимостей
cd python-version
python -m venv venv
source venv/bin/activate # Linux/Mac
# или venv\Scripts\activate # Windows
pip install -r requirements.txt
2. Запуск WebSocket сервера
python websocket_proxy.py --port 3055 --debug
3. Запуск в Figma
- Откройте Figma Desktop
- Перейдите в Plugins → Development → Import plugin from manifest...
- Выберите
src/cursor_mcp_plugin/manifest.json - Запустите плагин "Cursor MCP Plugin"
- Подключитесь к серверу на порту 3055
- Запомните Channel ID (например:
abc123xyz)
4. Запуск MCP сервера
python -m src.figma_mcp.server --server localhost:3055
5. Подключение к каналу
Используйте инструмент join_channel с полученным Channel ID:
{
"tool": "join_channel",
"arguments": {
"channel": "abc123xyz"
}
}
🛠️ Примеры использования
Получение информации о документе
{
"tool": "get_document_info",
"arguments": {}
}
Получение информации о узле
{
"tool": "get_node_info",
"arguments": {
"node_id": "4472:98013"
}
}
Поиск текстовых узлов
{
"tool": "scan_text_nodes",
"arguments": {
"node_id": "4472:98012",
"use_chunking": true,
"chunk_size": 50
}
}
Экспорт как изображение
{
"tool": "export_node_as_image",
"arguments": {
"node_id": "4472:98013",
"format": "PNG",
"scale": 2.0
}
}
🔧 Конфигурация
WebSocket Server
- Порт: 3055 (по умолчанию)
- Host: localhost
- Debug режим:
--debug
MCP Server
- Server URL: localhost:3055 (по умолчанию)
- Протокол: MCP 2024-11-05
- Transport: stdio
📁 Структура проекта
python-version/
├── src/figma_mcp/
│ ├── __init__.py
│ ├── server.py # Главный MCP сервер
│ ├── websocket_client.py # WebSocket клиент
│ ├── types.py # Типы Pydantic
│ └── utils.py # Утилиты
├── tests/ # Тесты (41 тест)
├── websocket_proxy.py # WebSocket сервер
├── requirements.txt # Зависимости
└── README.md # Документация
🧪 Тестирование
Запуск всех тестов:
python -m pytest tests/ -v
Тестирование подключения:
python test_mcp.py
🔒 Безопасность
- Фильтрация конфиденциальных данных из ответов Figma
- Валидация всех параметров с Pydantic
- Обработка ошибок и таймаутов
- Логирование в stderr для отладки
📦 Зависимости
- fastmcp: 2.4.0 - MCP сервер фреймворк
- websockets: 15.0.1 - WebSocket клиент/сервер
- pydantic: 2.11.5 - Валидация данных
- pytest: 8.3.5 - Тестирование
🐛 Отладка
- Проблемы с подключением: Проверьте статус WebSocket сервера
- Таймауты: Увеличьте timeout в WebSocket клиенте
- Ошибки каналов: Убедитесь, что используете правильный Channel ID
- Логи: Смотрите вывод в stderr для детальной информации
📝 Лицензия
MIT License
🤝 Вклад
- Форкните репозиторий
- Создайте ветку для функции
- Добавьте тесты
- Отправьте pull request
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。