File Analysis MCP Server
Provides tools for text file analysis, including metrics like word counts and character frequencies, alongside file reading and directory browsing capabilities. This server enables LLMs to interact with and process local file content securely through the Model Context Protocol.
README
This server is certified by MCP Hub and listed as a trusted MCP server.
File Analysis MCP Server
A custom-built MCP (Model Context Protocol) server for text file analysis, also published as a package to PyPI.
Table of Contents
- Introduction
- Features
- Installation and Setup from GitHub
- Claude Desktop Integration
- Installation from Package
Introduction
What is MCP?
Model Context Protocol (MCP) is an open protocol that standardizes how applications provide context to Large Language Models (LLMs). It creates a consistent interface for AI models like Claude to interact with external tools, data sources, and services.
MCP follows a client-server architecture:
- MCP Hosts: Programs like Claude Desktop that initiate connections
- MCP Clients: Protocol clients inside the host application
- MCP Servers: Lightweight programs (like this one) that expose capabilities
- Local Data Sources: Your computer's files, databases, and services
Why MCP?
MCP helps you build agents and complex workflows with LLMs by providing:
- Standardized interfaces to connect AI models to different data sources
- The flexibility to switch between LLM providers
- Best practices for secure data access
Features
This File Analysis MCP Server provides:
- Text analysis tools (word count, character frequency, etc.)
- File reading capabilities
- Directory listing
- File content access via MCP resources
Text Analysis Tool (analyze_text)
File Reader Tool (read_file)
Directory Browsing Tool (list_files)
Installation and Setup from GitHub
Step 1: Clone the Repository
Start by cloning the repository to your local machine:
git clone https://github.com/yourusername/file-analysis-mcp.git
cd file-analysis-mcp
Step 2: Set Up UV Package Manager
This project uses UV, a fast Python package manager. If you don't have it installed:
For MacOS/Linux:
curl -LsSf https://astral.sh/uv/install.sh | sh
For Windows:
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
Remember to restart your terminal after installing UV.
Step 3: Create a Virtual Environment
# Create and activate a virtual environment
uv venv
For MacOS/Linux:
source .venv/bin/activate
For Windows:
.venv\Scripts\activate
Step 4: Install Dependencies
# Install the required dependencies
uv pip install "mcp[cli]"
Testing and Debugging
Running with the MCP Inspector:
uv run mcp dev path/to/your/server/file
Claude Desktop Integration
The real power of your File Analysis server comes when you connect it to Claude Desktop!
Setting Up with Claude Desktop
-
Make sure Claude Desktop is installed
- Download from Claude.ai if you don't have it
-
Locate the configuration file:
- MacOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%AppData%\Claude\claude_desktop_config.json
If the file doesn't exist, create it.
- MacOS:
-
Add your server configuration:
For MacOS/Linux:
{ "mcpServers": { "file-analysis": { "command": "uv", "args": [ "--directory", "/ABSOLUTE/PATH/TO/file-analysis-mcp", "run", "server.py" ] } } }For Windows:
{ "mcpServers": { "file-analysis": { "command": "uv", "args": [ "--directory", "C:\\ABSOLUTE\\PATH\\TO\\file-analysis-mcp", "run", "server.py" ] } } }Important: Replace the path with the actual absolute path to where you cloned the repository. Do not use relative paths.
-
Restart Claude Desktop
- Close and reopen the application completely
-
Verify the connection
- Look for the tools icon (hammer) in the Claude interface
- Your tools should appear in the list when clicking this icon
Tips for Using Your Server
- File Paths: Always provide absolute file paths for best results
- Large Files: Break up analysis of very large files into smaller chunks
- Permissions: Ensure Claude has permission to access the files/directories you're analyzing
Installation from Package
From PyPI (Recommended)
The simplest way to install File Analysis MCP Server is from PyPI:
pip install file-analysis-mcp
Or using UV (recommended):
uv pip install file-analysis-mcp
Add your server configuration
{
"mcpServers": {
"mcp-server": {
"command": "uv",
"args": [
"run",
"mcp-server"
]
}
}
}
License
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。