File Search Server
Enables intelligent file searching in local directories using natural language queries. Supports searching by file type, filename patterns, and content across multiple formats including PDF, Word, Excel, and text files with AI-powered relevance scoring.
README
MCP File Search Server
A Model Context Protocol (MCP) server that provides intelligent file search capabilities for local directories. This server can search by file type, filename patterns, and file content using natural language queries.
Features
- 🔍 Natural Language Search: Use plain English to describe what files you're looking for
- 📁 Multi-Type Search: Search by file extension, filename keywords, and file content
- 🤖 AI-Powered Parsing: Uses OpenAI GPT to intelligently parse search requests
- 📄 Multiple File Formats: Supports PDF, Word docs, Excel, JSON, CSV, and text files
- ⚡ Fast Search: Efficient file system traversal with smart filtering
- 🎯 Relevance Scoring: Results ranked by relevance to your query
Installation
-
Install dependencies:
uv sync -
Set up environment variables:
cp .env.example .env # Edit .env and add your OpenAI API key -
Run the setup script:
python setup_mcp_server.py
Usage
As MCP Server
Add to your MCP client configuration:
{
"mcpServers": {
"file-search": {
"command": "python",
"args": ["/path/to/mcp_file_search_server.py"],
"env": {}
}
}
}
Available Tools
search_files
Search for files in a local directory using natural language.
Parameters:
folder_path(required): Absolute path to search directorysearch_prompt(required): Natural language search descriptionmax_results(optional): Maximum results to return (default: 10)
Examples:
{
"folder_path": "/Users/john/Documents",
"search_prompt": "pdf files about machine learning",
"max_results": 5
}
{
"folder_path": "/Users/john/Projects",
"search_prompt": "python scripts with neural network code",
"max_results": 10
}
Standalone Usage
You can also use the search functionality directly:
from fastmcp_file_search import search_files
from models import SearchRequest
request = SearchRequest(
folder_path="/path/to/search",
search_prompt="find all PDF files about AI",
max_results=10
)
results = search_files(request)
for result in results:
print(f"Found: {result['file_name']}")
Web UI
Run the Streamlit web interface:
streamlit run file_search_ui.py
Supported File Types
- Documents: PDF, Word (.docx, .doc), Excel (.xlsx, .xls)
- Data: JSON, CSV
- Code: Python (.py), JavaScript (.js), HTML, CSS, XML
- Text: Plain text, Markdown (.md), YAML (.yml), etc.
Search Examples
"pdf files about machine learning""python scripts with neural network code""excel spreadsheets containing budget data""json configuration files""word documents from last month""text files with API documentation"
Configuration
Environment Variables
OPENAI_API_KEY: Your OpenAI API key (required)OPENAI_ORG_ID: Your OpenAI organization ID (optional)
Search Behavior
- Uses AND logic by default (files must match all criteria)
- Searches file extensions, filenames, and content
- Excludes system directories (.git, .venv, pycache, etc.)
- Limits content search to first 50KB of each file
Architecture
mcp_file_search_server.py # MCP server implementation
├── fastmcp_file_search.py # Main search orchestration
├── models.py # Data models
├── utils.py # LLM parsing and utilities
├── search_functions.py # Individual search functions
└── file_search_ui.py # Web interface
Troubleshooting
-
"Import mcp could not be resolved"
- Install the MCP package:
pip install mcp
- Install the MCP package:
-
"LLM parsing failed"
- Check your OpenAI API key in
.env - Verify internet connection
- Check your OpenAI API key in
-
"No files found"
- Check folder path exists and is readable
- Try broader search terms
- Verify file types exist in target directory
Project Structure
├── mcp_file_search_server.py # Main MCP server implementation
├── models.py # Pydantic data models
├── utils.py # LLM integration and utilities
├── search_functions.py # Individual search operations
├── fastmcp_file_search.py # Main search orchestration
├── file_search_ui.py # Streamlit web interface
├── test_official_client.py # Official MCP client test
├── test_mcp_client.py # JSON-RPC test client
├── mcp_config.json # MCP server configuration
├── pyproject.toml # Project dependencies
├── README.md # This file
└── USAGE_GUIDE.md # Detailed usage instructions
Development
To extend the server:
- Add new search functions in
search_functions.py - Update the search orchestration in
fastmcp_file_search.py - Add new tools to
mcp_file_search_server.py
License
MIT License - see LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。