Filecoin Data Broker MCP Server
Enables AI agents to discover, purchase, and query blockchain-based datasets using Filecoin/IPFS storage with Ethereum NFT access controls and Lit Protocol encryption. Provides a decentralized marketplace for secure dataset trading with automatic purchase workflows and SQL query capabilities.
README
Filecoin Data Broker MCP Server
A Model Context Protocol (MCP) server implementation that provides blockchain-based dataset trading functionality using Filecoin, IPFS, Ethereum smart contracts, and Lit Protocol for decentralized encryption.
Overview
This project implements an MCP server that enables AI agents and applications to discover, purchase, and query datasets stored on Filecoin/IPFS with Ethereum NFT-based access controls. The server provides a secure, decentralized marketplace for data trading with Lit Protocol encrypted private datasets and public dataset previews.
Features
Core Functionality
- Blockchain-Based Dataset Trading: Purchase dataset access through Ethereum NFT contracts
- Lit Protocol Integration: Decentralized encryption and access control for private datasets
- SynapseStorage Integration: Enhanced data fetching and management capabilities
- Automatic Purchase Flow: Seamless NFT purchase during dataset queries
- Public Data Previews: Query public columns without purchase
- SQL Query Interface: Standard SQL queries on purchased datasets
- IPFS/Filecoin Storage: Decentralized data storage and retrieval
MCP Tools
list_datasets: Lists available datasets with metadata, pricing, and column informationquery_dataset: Executes SQL queries on datasets with automatic purchase handling
Dataset Types
- Public Columns: Available for querying without purchase, stored on IPFS
- Private Columns: Encrypted with Lit Protocol, require NFT ownership to decrypt and access
- Hybrid Access: Full dataset access includes both public and private data after purchase
Architecture
Core Components
- Entry Point:
bin/index.js- MCP server startup with stdio transport - Server:
server.js- MCP server instance and tool registration - Dataset Factory:
lib/dataset/factory.js- Abstract dataset creation and management - Blockchain Integration:
lib/contracts/FDBRegistry.js- Ethereum contract interactions - Encryption Layer:
lib/lit.js- Lit Protocol integration for decentralized encryption - Storage Layer:
lib/synapse.js- SynapseStorage for enhanced data operations
Dataset Implementations
- FilecoinDataset:
lib/dataset/filecoin/FilecoinDataset.js- Production blockchain-based datasets with Lit Protocol decryption - LocalDataset:
lib/dataset/mock/LocalDataset.js- Development/testing mock datasets
Security & Data Processing
- SQL Security:
lib/sql.js- Query sanitization and access control - Ethereum Integration:
lib/signer.js- Blockchain authentication and wallet management - Decentralized Encryption: Lit Protocol for secure data access control
Setup
Prerequisites
- Node.js ≥20.0.0 (required for private field syntax)
- Ethereum private key for blockchain access
- Access to Ethereum network (mainnet or testnet)
Installation
Manual Execution
ETHEREUM_PRIVATE_KEY=... npx -y fdb-mcp --help
Claude Desktop
{
"mcpServers": {
"filoDataBroker": {
"command": "npx",
"args": ["-y", "fdb-mcp"],
"env": {
"ETHEREUM_PRIVATE_KEY": "..."
}
}
}
}
Development Mode
-
Edit
.envfile by filling required values -
Start MCP inspector and auto-reload:
npm run dev
This provides a debugging interface for testing tool calls and responses.
Usage
Basic Workflow
-
List Available Datasets:
- Use
list_datasetstool to see available datasets - Review metadata, pricing, and column information
- Public columns are immediately queryable
- Use
-
Query Datasets with Automatic Purchase:
- Use
query_datasettool with SQL queries - System automatically handles NFT purchase for private data access
- Payment processed through Ethereum smart contract when needed
- Lit Protocol handles decryption of private datasets post-purchase
- Use
Example Tool Usage
List datasets:
{
"tool": "list_datasets",
"parameters": {}
}
Query dataset:
{
"tool": "query_dataset",
"parameters": {
"datasetId": "0x1234...",
"sql": "SELECT name, age FROM customers WHERE age > 25 LIMIT 100"
}
}
Project Structure
mcp/
├── bin/
│ └── index.js # Main executable entry point
├── lib/
│ ├── contracts/
│ │ ├── FDBRegistry.js # Ethereum contract singleton
│ │ └── FDBRegistry.json # Contract ABI and address
│ ├── dataset/
│ │ ├── factory.js # Dataset factory pattern
│ │ ├── filecoin/
│ │ │ ├── FilecoinDataset.js # Blockchain dataset implementation
│ │ │ └── FilecoinDatasetFactory.js # Filecoin dataset factory
│ │ └── mock/
│ │ ├── LocalDataset.js # Mock dataset for testing
│ │ └── LocalDatasetFactory.js # Local dataset factory
│ ├── tools/
│ │ ├── list-datasets.js # MCP tool: list datasets
│ │ └── query-dataset.js # MCP tool: query datasets with auto-purchase
│ ├── lit.js # Lit Protocol integration
│ ├── signer.js # Ethereum wallet configuration
│ ├── sql.js # SQL processing and security
│ └── synapse.js # SynapseStorage integration
├── sample/ # Sample datasets for testing
├── server.js # MCP server and tool registration
├── types.d.ts # TypeScript type definitions
└── package.json # ESM module configuration
Development
Coding Conventions
- Module System: ESM modules with
.jsextensions in imports - Private Fields: Modern
#fieldNamesyntax for encapsulation - Async Patterns: Prefer async/await over Promise chains
- Type Safety: JSDoc comments with TypeScript syntax for type hints
Testing with Local Datasets
For development without blockchain dependency:
- Switch to
LocalDatasetFactoryinlib/dataset/factory.js - Use sample data from
sample/directory - Test tool functionality with MCP inspector
Adding New Tools
- Create tool file in
lib/tools/directory - Follow existing tool patterns with Zod schemas
- Import and register in
server.js - Test with
npm run devand MCP inspector
Blockchain Development
- Test on testnet before mainnet deployment
- Use environment variables for network configuration
- Handle gas costs and transaction failures gracefully
- Implement proper error handling for network issues
Security Considerations
Access Control
- NFT ownership verification for private dataset access
- SQL query sanitization to prevent injection attacks
- Ethereum private key protection via environment variables
Data Privacy
- Public columns available for preview without purchase
- Lit Protocol provides decentralized encryption and access control
- Automatic purchase and decryption workflows for seamless data access
Query Security
- Row limits enforced on SQL queries
- Table name restrictions and input validation
- Error messages that don't leak sensitive information
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。