filesystem-mcp

filesystem-mcp

A TypeScript-based MCP server that implements a simple notes system, allowing users to create, access, and generate summaries of text notes via URIs and tools.

Category
访问服务器

Tools

search_files

Search for a regex pattern within files in a specified directory (read-only).

list_files

List files/directories. Can optionally include stats and list recursively.

stat_items

Get detailed status information for multiple specified paths.

write_content

Write or append content to multiple specified files (creating directories if needed).

move_items

Move or rename multiple specified files/directories.

copy_items

Copy multiple specified files/directories.

chmod_items

Change permissions mode for multiple specified files/directories (POSIX-style).

replace_content

Replace content within files across multiple specified paths.

chown_items

Change owner (UID) and group (GID) for multiple specified files/directories.

read_content

Read content from multiple specified files.

delete_items

Delete multiple specified files or directories.

create_directories

Create multiple specified directories (including intermediate ones).

README

Filesystem MCP Server (@sylphlab/filesystem-mcp)

npm version Docker Pulls

<!-- Add other badges like License, Build Status if applicable --> <a href="https://glama.ai/mcp/servers/@sylphlab/filesystem-mcp"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@sylphlab/filesystem-mcp/badge" /> </a>

Empower your AI agents (like Cline/Claude) with secure, efficient, and token-saving access to your project files. This Node.js server implements the Model Context Protocol (MCP) to provide a robust set of filesystem tools, operating safely within a defined project root directory.

Installation

There are several ways to use the Filesystem MCP Server:

1. Recommended: npx (or bunx) via MCP Host Configuration

The simplest way is via npx or bunx, configured directly in your MCP host environment (e.g., Roo/Cline's mcp_settings.json). This ensures you always use the latest version from npm without needing local installation or Docker.

Example (npx):

{
  "mcpServers": {
    "filesystem-mcp": {
      "command": "npx",
      "args": ["@sylphlab/filesystem-mcp"],
      "name": "Filesystem (npx)"
    }
  }
}

Example (bunx):

{
  "mcpServers": {
    "filesystem-mcp": {
      "command": "bunx",
      "args": ["@sylphlab/filesystem-mcp"],
      "name": "Filesystem (bunx)"
    }
  }
}

Important: The server uses its own Current Working Directory (cwd) as the project root. Ensure your MCP Host (e.g., Cline/VSCode) is configured to launch the command with the cwd set to your active project's root directory.

2. Docker

Use the official Docker image for containerized environments.

Example MCP Host Configuration:

{
  "mcpServers": {
    "filesystem-mcp": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "-v",
        "/path/to/your/project:/app", // Mount your project to /app
        "sylphlab/filesystem-mcp:latest"
      ],
      "name": "Filesystem (Docker)"
    }
  }
}

Remember to replace /path/to/your/project with the correct absolute path.

3. Local Build (For Development)

  1. Clone: git clone https://github.com/sylphlab/filesystem-mcp.git
  2. Install: cd filesystem-mcp && pnpm install (Using pnpm now)
  3. Build: pnpm run build
  4. Configure MCP Host:
    {
      "mcpServers": {
        "filesystem-mcp": {
          "command": "node",
          "args": ["/path/to/cloned/repo/filesystem-mcp/dist/index.js"], // Updated build dir
          "name": "Filesystem (Local Build)"
        }
      }
    }
    
    Note: Launch the node command from the directory you intend as the project root.

Quick Start

Once the server is configured in your MCP host (see Installation), your AI agent can immediately start using the filesystem tools.

Example Agent Interaction (Conceptual):

Agent: <use_mcp_tool>
         <server_name>filesystem-mcp</server_name>
         <tool_name>read_content</tool_name>
         <arguments>{"paths": ["src/index.ts"]}</arguments>
       </use_mcp_tool>

Server Response: (Content of src/index.ts)

Why Choose This Project?

  • 🛡️ Secure & Convenient Project Root Focus: Operations confined to the project root (cwd at launch).
  • ⚡ Optimized & Consolidated Tools: Batch operations reduce AI-server round trips, saving tokens and latency. Reliable results for each item in a batch.
  • 🚀 Easy Integration: Quick setup via npx/bunx.
  • 🐳 Containerized Option: Available as a Docker image.
  • 🔧 Comprehensive Functionality: Covers a wide range of filesystem tasks.
  • ✅ Robust Validation: Uses Zod schemas for argument validation.

Performance Advantages

(Placeholder: Add benchmark results and comparisons here, demonstrating advantages over alternative methods like individual shell commands.)

  • Batch Operations: Significantly reduces overhead compared to single operations.
  • Direct API Usage: More efficient than spawning shell processes for each command.
  • (Add specific benchmark data when available)

Features

This server equips your AI agent with a powerful and efficient filesystem toolkit:

  • 📁 Explore & Inspect (list_files, stat_items): List files/directories (recursive, stats), get detailed status for multiple items.
  • 📄 Read & Write Content (read_content, write_content): Read/write/append multiple files, creates parent directories.
  • ✏️ Precision Editing & Searching (edit_file, search_files, replace_content): Surgical edits (insert, replace, delete) across multiple files with indentation preservation and diff output; regex search with context; multi-file search/replace.
  • 🏗️ Manage Directories (create_directories): Create multiple directories including intermediate parents.
  • 🗑️ Delete Safely (delete_items): Remove multiple files/directories recursively.
  • ↔️ Move & Copy (move_items, copy_items): Move/rename/copy multiple files/directories.
  • 🔒 Control Permissions (chmod_items, chown_items): Change POSIX permissions and ownership for multiple items.

Key Benefit: All tools accepting multiple paths/operations process each item individually and return a detailed status report.

Design Philosophy

(Placeholder: Explain the core design principles.)

  • Security First: Prioritize preventing access outside the project root.
  • Efficiency: Minimize communication overhead and token usage for AI interactions.
  • Robustness: Provide detailed results and error reporting for batch operations.
  • Simplicity: Offer a clear and consistent API via MCP.
  • Standard Compliance: Adhere strictly to the Model Context Protocol.

Comparison with Other Solutions

(Placeholder: Objectively compare with alternatives.)

Feature/Aspect Filesystem MCP Server Individual Shell Commands (via Agent) Other Custom Scripts
Security High (Root Confined) Low (Agent needs shell access) Variable
Efficiency (Tokens) High (Batching) Low (One command per op) Variable
Latency Low (Direct API) High (Shell spawn overhead) Variable
Batch Operations Yes (Most tools) No Maybe
Error Reporting Detailed (Per item) Basic (stdout/stderr parsing) Variable
Setup Easy (npx/Docker) Requires secure shell setup Custom

Future Plans

(Placeholder: List upcoming features or improvements.)

  • Explore file watching capabilities.
  • Investigate streaming support for very large files.
  • Enhance performance for specific operations.
  • Add more advanced filtering options for list_files.

Documentation

(Placeholder: Add link to the full documentation website once available.)

Full documentation, including detailed API references and examples, will be available at: [Link to Docs Site]

Contributing

Contributions are welcome! Please open an issue or submit a pull request on the GitHub repository.

License

This project is released under the MIT License.


Development

  1. Clone: git clone https://github.com/sylphlab/filesystem-mcp.git
  2. Install: cd filesystem-mcp && pnpm install
  3. Build: pnpm run build (compiles TypeScript to dist/)
  4. Watch: pnpm run dev (optional, recompiles on save)

Publishing (via GitHub Actions)

This repository uses GitHub Actions (.github/workflows/publish.yml) to automatically publish the package to npm and build/push a Docker image to Docker Hub on pushes of version tags (v*.*.*) to the main branch. Requires NPM_TOKEN, DOCKERHUB_USERNAME, and DOCKERHUB_TOKEN secrets configured in the GitHub repository settings.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选