Filesystem MCP Server (HTTP Streaming)

Filesystem MCP Server (HTTP Streaming)

Enables remote file system operations (read/write files, manage directories, search files) over HTTP using OAuth 2.0 authentication, with support for web-based clients and multiple concurrent sessions.

Category
访问服务器

README

Filesystem MCP Server (HTTP Streaming)

An HTTP streaming port of the official MCP Filesystem Server by Anthropic.

About This Port

This is a port of @modelcontextprotocol/server-filesystem that replaces the stdio transport with HTTP Streaming (Streamable HTTP transport).

Why HTTP Streaming?

The original MCP filesystem server uses stdio transport, which works well for local CLI integrations but has limitations:

  • Requires spawning a subprocess for each connection
  • Not suitable for remote/networked deployments
  • Can't be accessed by web-based MCP clients

This port uses HTTP Streaming, enabling:

  • Remote access - Connect over HTTP from anywhere
  • Multiple concurrent sessions - Handle many clients simultaneously
  • Web client compatibility - Works with browser-based MCP clients
  • Standalone deployment - Run as a service without subprocess management

All filesystem functionality from the original is preserved.


Features

  • Read/write files
  • Create/list/delete directories
  • Move files/directories
  • Search files
  • Get file metadata
  • Dynamic directory access control via Roots
  • OAuth 2.1 authentication with PKCE support
  • ChatGPT integration via MCP connectors

Installation

npm install -g mcpfs

Or for local development:

npm install
npm run build

Quick Start

# Initialize credentials (creates .env with random values)
mcpfs --init

# Start the server
mcpfs /path/to/your/project

Using with ChatGPT

ChatGPT requires a publicly accessible HTTPS URL. Use Cloudflare Tunnel (free) to expose your local server:

Step 1: Install Cloudflare Tunnel

# Linux
curl -L https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64 -o cloudflared
chmod +x cloudflared
sudo mv cloudflared /usr/local/bin/

# Mac
brew install cloudflared

# Windows - download from:
# https://github.com/cloudflare/cloudflared/releases

Step 2: Start mcpfs

mcpfs --init  # First time only - creates credentials
mcpfs /path/to/your/project

Step 3: Start the Tunnel

In a separate terminal:

cloudflared tunnel --url http://localhost:24024

You'll get a URL like https://random-words.trycloudflare.com

Step 4: Connect in ChatGPT

  1. Go to ChatGPT → Settings → Connectors → Create
  2. Name: mcpfs (or any name you prefer)
  3. URL: https://random-words.trycloudflare.com/mcp (use your tunnel URL + /mcp)
  4. Authentication: OAuth
  5. Client ID: Copy from your .env file
  6. Client Secret: Copy from your .env file
  7. Click Create

ChatGPT will redirect you to authorize. Once complete, you can use filesystem tools in ChatGPT!

Note on Tunnel URLs

Quick tunnels generate a new URL each time. For a permanent URL:

  • Create a free Cloudflare account
  • Set up a named tunnel with your own domain

Usage

Default Directory Behavior

When no directories are specified, the server will serve the current working directory if it's considered safe. The server will refuse to auto-serve:

  • Root directory (/)
  • Home directory (~)
  • System directories (/usr, /etc, /var, /System, etc.)

To serve these directories, you must specify them explicitly as command-line arguments.

Command Line Options

Option Description
--init Generate random credentials and save to .env
--force Used with --init to overwrite existing .env

Environment Variables

CLIENT_ID=myid CLIENT_SECRET=mysecret mcpfs /path/to/dir

# With custom port
PORT=8080 CLIENT_ID=myid CLIENT_SECRET=mysecret mcpfs /path/to/dir
Variable Required Default Description
CLIENT_ID Yes - OAuth client ID
CLIENT_SECRET Yes - OAuth client secret
PORT No 24024 Server port

HTTP Endpoints

OAuth 2.1 Discovery (RFC 9728, RFC 8414)

Method Path Description
GET /.well-known/oauth-protected-resource Protected resource metadata
GET /.well-known/oauth-authorization-server Authorization server metadata

OAuth 2.1 Endpoints

Method Path Description
POST /register Dynamic client registration (RFC 7591)
GET /authorize Authorization endpoint with PKCE
POST /token Token endpoint

MCP Endpoints

Method Path Auth Description
POST /mcp Bearer Send MCP messages (initialize, tool calls, etc.)
GET /mcp Bearer SSE stream for server-to-client notifications
DELETE /mcp Bearer Terminate session

Authentication

This server supports OAuth 2.1 with multiple authentication flows:

Authorization Code Flow with PKCE (Recommended)

Used by ChatGPT and other MCP clients. The flow is:

  1. Client discovers OAuth endpoints via /.well-known/oauth-authorization-server
  2. Client registers dynamically via /register (or uses static credentials)
  3. Client redirects to /authorize with PKCE challenge
  4. Server redirects back with authorization code
  5. Client exchanges code for tokens at /token

Client Credentials Flow (Machine-to-Machine)

For direct API access without user interaction:

curl -X POST http://localhost:24024/token \
  -d "grant_type=client_credentials" \
  -d "client_id=YOUR_CLIENT_ID" \
  -d "client_secret=YOUR_CLIENT_SECRET"

Response:

{
  "access_token": "abc123...",
  "token_type": "Bearer",
  "expires_in": 3600
}

Using the Token

curl -X POST http://localhost:24024/mcp \
  -H "Content-Type: application/json" \
  -H "Accept: application/json, text/event-stream" \
  -H "Authorization: Bearer YOUR_ACCESS_TOKEN" \
  -d '{
    "jsonrpc": "2.0",
    "id": 1,
    "method": "initialize",
    "params": {
      "protocolVersion": "2024-11-05",
      "capabilities": {},
      "clientInfo": { "name": "my-client", "version": "1.0.0" }
    }
  }'

Directory Access Control

The server uses a flexible directory access control system.

Method 1: Command-line Arguments

mcpfs /path/to/dir1 /path/to/dir2

Method 2: MCP Roots (Recommended)

MCP clients that support Roots can dynamically update the allowed directories.

How It Works

  1. Server Startup - Server starts with directories from command-line arguments
  2. Client Connection - Client connects and sends initialize request
  3. Roots Protocol - If client supports roots, server uses client's roots
  4. Fallback - If client doesn't support roots, server uses command-line directories
  5. Access Control - All filesystem operations are restricted to allowed directories

API

Tools

  • read_text_file

    • Read complete contents of a file as text
    • Inputs:
      • path (string)
      • head (number, optional): First N lines
      • tail (number, optional): Last N lines
  • read_media_file

    • Read an image or audio file as base64
    • Input: path (string)
  • read_multiple_files

    • Read multiple files simultaneously
    • Input: paths (string[])
  • write_file

    • Create new file or overwrite existing
    • Inputs: path (string), content (string)
  • edit_file

    • Make selective edits with pattern matching
    • Inputs: path, edits (array of oldText/newText), dryRun (boolean)
  • create_directory

    • Create new directory or ensure it exists
    • Input: path (string)
  • list_directory

    • List directory contents with [FILE] or [DIR] prefixes
    • Input: path (string)
  • list_directory_with_sizes

    • List directory with file sizes
    • Inputs: path (string), sortBy ("name" | "size")
  • move_file

    • Move or rename files and directories
    • Inputs: source (string), destination (string)
  • search_files

    • Recursively search for files matching patterns
    • Inputs: path, pattern, excludePatterns
  • directory_tree

    • Get recursive JSON tree structure
    • Inputs: path, excludePatterns
  • get_file_info

    • Get detailed file/directory metadata
    • Input: path (string)
  • list_allowed_directories

    • List all accessible directories
    • No input required

Tool Annotations

Tool readOnlyHint idempotentHint destructiveHint
read_text_file true
read_media_file true
read_multiple_files true
list_directory true
list_directory_with_sizes true
directory_tree true
search_files true
get_file_info true
list_allowed_directories true
create_directory false true false
write_file false true true
edit_file false false true
move_file false false false

Security

  • OAuth 2.1 authentication with PKCE for authorization code flow
  • Token audience validation - tokens are bound to the resource server
  • Refresh token rotation - tokens are rotated on each refresh (OAuth 2.1 requirement)
  • Only directories specified at startup (or via MCP Roots) are accessible
  • Symlinks are resolved to prevent directory escape attacks

License

MIT License. See LICENSE file for details.

Credits

Based on the MCP Filesystem Server by Anthropic, PBC.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选