Financial Analysis MCP Server
Enables LLMs to retrieve, analyze, and visualize stock prices and financial report data for quantitative trading research and investment analysis. Provides real-time and historical stock data, financial statement analysis, key metric calculations, and trading signal visualization.
README
MCP Server for Financial Analysis
Introduction
This project is a Model Context Protocol (MCP) server designed to enable LLMs (such as Claude, Cursor, or GPT-based agents) to retrieve, analyze, and visualize stock prices and financial report data. It provides a set of robust tools for quantitative trading research, investment analysis, and financial education.
Usage Scenarios
- LLM-driven trading analysis: Let LLMs fetch and analyze stock data, financial statements, and technical indicators to generate trading insights.
- Financial metric calculation: Compute key ratios and metrics from income statements, balance sheets, and cash flow tables.
- Visualization: Generate price charts, financial metric trends, and highlight trading opportunities.
- Automated research: Integrate with LLMs to answer questions like "What is the ROE of AAPL?", "Show me the last 6 months of MSFT price data.", or "Plot buy/sell signals for TSLA."
Features
- Retrieve real-time and historical stock prices (single or multiple tickers)
- Extract and analyze financial statements (income, balance sheet, cash flow)
- Calculate key financial and technical metrics (PE, ROE, moving averages, etc.)
- Visualize price data, metrics, and trading signals
- LLM-friendly, JSON-serializable outputs
Installation
- Clone the repository
git clone https://github.com/Nishaant-Soni/MCP_Server_for_Financial_Analysis.git cd <your-repo-folder> - Set up a Python virtual environment
python3 -m venv .venv source .venv/bin/activate - Install dependencies
uv sync
How to Run
-
Configure your LLM client (Claude, Cursor, etc.) to connect to the MCP server and call the available tools.
Go to Claude settings Select Developer --> Edit Config Add new MCP server. In the JSON File, add
{"mcpServers": {"trader-mcp": { "command": "uv", "args": [ "--directory", "/directory/to/your/mcp", "run", "main.py" ] } } }
'trader-mcp' should now be listed in your Claude tools.
- Start talking with your trading assistant!
Quries like:
Compare the stock prices of Nvidia and AMD in the past month.
How's Tesla stock like in the past 3 months?
Plot the trading opportunities of Microsoft in the past 3 months.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。