Financial Data MCP Server
Provides real-time stock data analysis, portfolio management, technical analysis with EMA/MACD indicators, and automated trading recommendations with confidence levels using Yahoo Finance API.
README
Financial Data MCP Server
A comprehensive Model Context Protocol (MCP) server for financial data analysis, portfolio management, and automated trading recommendations.
Features
- 📊 Real-time Stock Data - Uses free yfinance (Yahoo Finance) API - no API keys required
- 💼 Portfolio Management - Track multiple portfolios with automated analysis
- 📈 Technical Analysis - EMA-based trend detection and MACD charts
- 🎯 Trading Signals - Automated buy/sell recommendations with confidence levels
- 📧 Email Reports - Automated batch analysis reports with chart attachments
- 📉 Performance Tracking - Daily monitoring of recommendation performance
- 🤖 MCP Integration - Full integration with Claude Code and other MCP clients
Architecture
Core Components
-
financial_mcp_server.py - Main MCP server
- Provides MCP tools and resources for financial analysis
- Integrates with Claude Code
- Real-time stock data via yfinance
-
batch_fin_mcp_server.py - Batch analysis engine
- Analyzes all portfolios at once
- Generates comprehensive reports and charts
- Implements 4 trading scenarios based on EMA analysis
-
email_report_script.py - Email automation
- Sends analysis results via email
- Attaches charts and detailed reports
- Saves buy recommendations for tracking
-
daily_tracking_script.py - Performance tracking
- Monitors buy recommendation performance
- Creates tracking charts
- Generates daily performance reports
Installation
1. Clone the repository
git clone https://github.com/j1c4b/finance_mcp_server.git
cd finance_mcp_server
2. Create and activate virtual environment
python3 -m venv mcp_fin_server_venv
source mcp_fin_server_venv/bin/activate # On Windows: mcp_fin_server_venv\Scripts\activate
3. Install dependencies
pip install -r clean_requirements.txt
Configuration
Portfolio Setup
Edit portfolio.json to add your portfolios:
{
"tech_stocks": {
"portfolio": "Technology Giants",
"stock_list": ["AAPL", "GOOGL", "MSFT", "AMZN", "META"]
},
"dividend_portfolio": {
"portfolio": "Dividend Champions",
"stock_list": ["JNJ", "PG", "KO", "PEP", "MMM"]
}
}
Email Configuration (Optional)
For email reports, create email_config.json:
{
"smtp_server": "smtp.gmail.com",
"smtp_port": 587,
"sender_email": "your_email@gmail.com",
"sender_password": "your_app_password",
"recipient_emails": ["recipient@example.com"],
"subject_prefix": "📊 Financial Analysis Report",
"max_attachment_size_mb": 25
}
Usage
Running the MCP Server
source mcp_fin_server_venv/bin/activate
python3 financial_mcp_server.py
Batch Analysis
Analyze all portfolios and generate reports:
python3 batch_fin_mcp_server.py
Results are saved to batch_financial_charts/
Send Email Reports
python3 email_report_script.py
Track Recommendations
python3 daily_tracking_script.py
Results are saved to tracking_charts/
MCP Tools
The server provides these tools for Claude Code integration:
load_portfolio- Load portfolio data from portfolio.jsonanalyze_portfolio- Detailed analysis of specific portfolioportfolio_performance- Performance metrics over timeget_stock_info- Comprehensive stock informationget_earnings_calendar- Upcoming earnings announcementsget_analyst_changes- Recent analyst upgrades/downgradesgenerate_macd_chart- MACD technical analysis chartsget_market_overview- Major market indices status
Trading Scenarios
The batch analyzer identifies 4 key trading scenarios:
- Scenario A: Price >10% above 50 EMA → SELL signal
- Scenario B: Price above 50 EMA, touched recently → BUY signal
- Scenario C: Price >5% below 50 EMA, decreasing 3+ days, above 200 EMA → BUY signal
- Scenario D: Price below 50 EMA, touched 200 EMA recently → BUY signal
Technical Analysis
- Trend Detection: Golden Cross / Death Cross analysis
- EMAs: 50-day and 200-day exponential moving averages
- MACD: Moving Average Convergence Divergence charts
- Volume Analysis: Trading volume patterns
- Confidence Scores: Each recommendation includes confidence level
Project Structure
finance_mcp_server/
├── financial_mcp_server.py # Main MCP server
├── batch_fin_mcp_server.py # Batch analysis engine
├── email_report_script.py # Email automation
├── daily_tracking_script.py # Performance tracking
├── portfolio.json # Portfolio configuration
├── requirements.txt # Python dependencies
├── clean_requirements.txt # Cleaned dependencies
├── CLAUDE.md # AI assistant guidance
├── mcp-http-bridge/ # HTTP bridge for MCP
├── batch_financial_charts/ # Generated analysis charts
└── tracking_charts/ # Performance tracking charts
Requirements
- Python 3.8+
- yfinance (free Yahoo Finance API)
- pandas, numpy, matplotlib
- MCP SDK (mcp>=1.0.0)
Disclaimer
⚠️ This software is for informational purposes only. It does not constitute financial advice. Always do your own research before making investment decisions.
License
MIT License - See LICENSE file for details
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Support
For issues and questions, please open an issue on GitHub.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。