Find BGM MCP Server
Helps YouTube content creators find perfect background music for their shorts by analyzing script content for mood, theme, and pacing, then recommending suitable tracks from YouTube Music with confidence scoring and duration filtering.
README
Find BGM MCP Server
An MCP server that helps YouTube content creators find perfect background music for their shorts by analyzing script content and recommending tracks from YouTube Music.
Features
- Script Analysis: Analyzes mood, theme, pacing, and sentiment from video scripts
- Smart Recommendations: Uses YouTube Music API to find suitable background tracks
- Duration Filtering: Ensures recommendations fit your short video length
- Confidence Scoring: Ranks recommendations by relevance to your content
Architecture
The server follows clean architecture principles with modular design:
find_bgm/
├── server.py # Main server entry point
├── config.py # Configuration management
├── models.py # Data models and types
├── script_analyzer.py # Script analysis logic
├── music_service.py # YouTube Music API integration
├── tools.py # MCP tool definitions
└── test_server.py # Test suite
Installation
- Install dependencies:
pip install -r requirements.txt
- (Optional) Set up YouTube Music API access:
- Follow the ytmusicapi setup guide
- Create
oauth.jsonfile in the project directory - Without this, the server will use mock recommendations
Usage
The server provides one main tool: recommend_background_music
Parameters
script(required): Your YouTube short script/contentduration(required): Length of your short in seconds (15-60)genre_preference(optional): "pop", "electronic", "chill", "rock", "hip-hop", "classical", "ambient", "any"mood_preference(optional): "upbeat", "calm", "dramatic", "energetic", "relaxed", "motivational", "any"content_type(optional): "comedy", "educational", "lifestyle", "fitness", "cooking", "travel", "tech", "other"
Example Response
{
"analysis": {
"detected_mood": "motivational",
"detected_theme": "fitness",
"pacing": "medium",
"sentiment_score": 0.4,
"keywords": ["workout", "energy", "strong"]
},
"recommendations": [
{
"title": "Uplifting Corporate Background",
"artist": "Audio Library",
"youtube_music_id": "abc123",
"confidence_score": 0.85,
"reason": "Strong match for motivational mood and fitness content",
"duration": 45,
"loop_suitable": true
}
]
}
Configuration
Customize behavior with environment variables:
# Logging level
export BGM_LOG_LEVEL=DEBUG
# OAuth file location
export BGM_OAUTH_FILE=my_oauth.json
# Search and recommendation limits
export BGM_MAX_DURATION=240
export BGM_SEARCH_LIMIT=15
YouTube Music API Setup
Method 1: Browser Authentication (Recommended)
- Install ytmusicapi:
pip install ytmusicapi - Run:
ytmusicapi browser - Follow prompts to paste browser headers from YouTube Music
- Save as
oauth.json
Method 2: OAuth Setup
- Create Google Cloud project
- Enable YouTube Data API v3
- Create OAuth credentials
- Run:
ytmusicapi oauth - Complete authentication flow
Without the API, the server works with mock data for testing.
Running the Server
python server.py
The server runs on stdio and can be integrated with any MCP-compatible client.
Testing
# Test all components
python test_server.py
# Test with virtual environment
source venv/bin/activate
python test_server.py
Claude Desktop Integration
Add to your claude_desktop_config.json:
{
"mcpServers": {
"find-bgm": {
"command": "/path/to/find_bgm/venv/bin/python",
"args": ["/path/to/find_bgm/server.py"]
}
}
}
Components
ScriptAnalyzer
Analyzes script content to detect mood, theme, and pacing using natural language processing.
YouTubeMusicService & MusicRecommendationService
Handles YouTube Music API integration and generates scored recommendations.
BGMTools
MCP tool interface that orchestrates script analysis and music recommendations.
Configuration Management
Environment-based configuration with sensible defaults and type safety.
Example Usage
from models import RecommendationRequest
from script_analyzer import ScriptAnalyzer
from music_service import MusicRecommendationService
# Analyze script
analyzer = ScriptAnalyzer()
analysis = analyzer.analyze_script("Your video script here")
# Get recommendations
service = MusicRecommendationService(music_service, config)
recommendations = await service.get_recommendations(
analysis, "electronic", "upbeat", 30
)
The server provides intelligent music recommendations to help creators find the perfect soundtrack for their content! 🎵
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。