
FireConfigMCP
An MCP server that provides access to Firebase Remote Config, allowing clients to interact with and manage Firebase remote configuration settings through the Model Context Protocol.
README
fire_config_mcp
Setup
1. Install dependencies
bun install
2. Create and place serviceAccount.json
To allow the server to access Firebase Remote Config, you need a Google Cloud service account key file:
A. Google Cloud Console (point‑and‑click)
- Open IAM & Admin → Service Accounts inside the same GCP project that owns your Firebase app.
- Click Create Service Account
- Name:
mcp-remote-config
(any name is fine) - Description: “MCP server – Remote Config access”
- Name:
- Grant this service account access:
- In the role picker, search for Remote Config Viewer or Remote Config Admin (as needed) and select it.
- Optionally add Firebase Analytics Viewer if your template conditions reference GA4 audiences.
- Finish → Done.
- In the list, click the account → Keys tab → Add Key → Create new key → JSON.
- Download the JSON file and place it in the project root as
serviceAccount.json
.
Note: Do not commit
serviceAccount.json
to version control. It is already in.gitignore
.
3. Run the server
bun run index.ts
The server will start on port 3000 by default.
Usage
Add this MCP server to a client (e.g., Cursor, Claude Desktop, or your own MCP client)
In Cursor:
- Open Cursor Settings → Features → Add new MCP server.
- For the command, use:
npx -y supergateway --sse http://localhost:3000/mcp
"fire-config-mcp": { "command": "npx", "args": [ "-y", "supergateway", "--sse", "http://localhost:3000/mcp" ] } ``` (Or use the path/command as configured in your environment.) 3. Save and connect.
In your own MCP client (TypeScript example):
You can connect to this server using the @modelcontextprotocol/sdk client:
import { Client } from "@modelcontextprotocol/sdk/client/index.js";
import { SSEClientTransport } from "@modelcontextprotocol/sdk/client/sse.js";
const client = new Client({ name: "my-client", version: "1.0.0" });
const transport = new SSEClientTransport("http://localhost:3000/mcp");
await client.connect(transport);
// Now you can list tools, call tools, etc.
const tools = await client.listTools();
For more details, see the MCP TypeScript SDK documentation.
This project was created using bun init
in bun v1.2.7. Bun is a fast all-in-one JavaScript runtime.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。