FlashCardsMCP
A dockerized Python MCP server that manages flash card projects using OpenAI embeddings and SQLite, enabling semantic search and storage of flash cards across projects.
README
FlashCardsMCP
This is a dockerized Python Model Context Protocol (MCP) server for managing flash card projects. It uses OpenAI embeddings and SQLite for semantic search and storage.
Features
- List all project names and ids
- Semantic search for project by name (using OpenAI embeddings)
- Get random flash card by project id
- Add flash card to project (with question, answer, optional hint, optional description)
- List all flash cards by project
- Semantic search for flash cards by query (using OpenAI embeddings)
- Global semantic search for cards across all projects
- Retrieve a card by its id
- All API/tool responses include a
typefield:projectorcard - No binary embedding data is ever returned in API responses
API/Tool Design
- All tools raise
ValueErrorfor not found or empty results - Project and card creation tools return the full object, not just the id
- See
.github/copilot-instructions.mdfor code generation rules
Getting Started
- Install dependencies:
pip install -r requirements.txt - Run the server:
python main.py - Run with Docker:
docker build -t flash-card-mcp . # Run with database persistence (recommended): docker run -v $(pwd)/storage:/app/storage/database.db flash-card-mcp
Environment Variables
- OPENAI_API_KEY: Required. Set this environment variable to your OpenAI API key to enable embedding generation. Example:
You must set this variable before running the server or running the Docker container.export OPENAI_API_KEY=sk-...your-key...
Usage
This server exposes its API via the Model Context Protocol (MCP) using FastMCP. You can call the following tools:
get_all_projects()→ List all projectsadd_project(name)→ Create a new project (returns full project dict)search_project_by_name(name)→ Semantic search for a project (returns full project dict)get_random_card_by_project(project_id)→ Get a random card from a projectadd_card(project_id, question, answer, hint=None, description=None)→ Add a card (returns full card dict)get_all_cards_by_project(project_id)→ List all cards in a projectsearch_cards_by_embedding(project_id, query)→ Semantic search for cards in a projectglobal_search_cards_by_embedding(query)→ Semantic search for cards across all projectsget_card_by_id(card_id)→ Retrieve a card by its id
All returned objects include a type field and never include binary embedding data.
Development
- All project and card data is stored in SQLite (
database.db) - Embeddings are generated using OpenAI's
text-embedding-ada-002model - The server is implemented in
main.pyanddb.py - See
.github/copilot-instructions.mdfor code and API rules
Inspector
npx @modelcontextprotocol/inspector docker 'run -e OPENAI_API_KEY=sk-...your-key... -v /<path>/storage:/app/storage --rm -i flash-card-mcp
For more details, see the code and docstrings in main.py and db.py.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。