Flask MCP Server Implementation Guide

Flask MCP Server Implementation Guide

A Flask-based reference implementation demonstrating how to build an MCP server with stateless HTTP transport, including example tools for generating random numbers and sentences.

Category
访问服务器

README

MCP Server Implementation Guide

A Flask-based implementation of the Model Context Protocol (MCP) server.

What is MCP?

MCP (Model Context Protocol) is an open-source standard for connecting AI applications to external systems. Think of it like a USB-C port for AI applications — it provides a standardized way to connect AI applications (like Cursor, Claude, or ChatGPT) to data sources, tools, and workflows.

┌─────────────────┐         ┌─────────────────┐
│                 │         │                 │
│   AI Client     │◄───────►│   MCP Server    │
│   (Cursor)      │  MCP    │   (Flask App)   │
│                 │         │                 │
└─────────────────┘         └─────────────────┘

Reference: What is MCP? - modelcontextprotocol.io


JSON-RPC 2.0 Protocol

MCP uses JSON-RPC 2.0 for all communication. There are three message types:

Request

{
  "jsonrpc": "2.0",
  "id": 1,
  "method": "method_name",
  "params": { ... }
}

Response (Success)

{
  "jsonrpc": "2.0",
  "id": 1,
  "result": { ... }
}

Response (Error)

{
  "jsonrpc": "2.0",
  "id": 1,
  "error": {
    "code": -32600,
    "message": "Invalid Request"
  }
}

Notification (No Response Expected)

{
  "jsonrpc": "2.0",
  "method": "notifications/initialized"
}

Reference: Messages - MCP Specification


Required JSON-RPC Methods

An MCP server must implement the following methods:

Method Type Description
initialize Request Handshake and capability negotiation
notifications/initialized Notification Client confirms initialization complete
tools/list Request List available tools
tools/call Request Execute a tool
resources/list Request List available resources
resources/read Request Read a resource
prompts/list Request List available prompts
prompts/get Request Get a prompt template

Reference: MCP Specification


Method Details

1. initialize

Establishes connection and negotiates capabilities.

Request:

{
  "jsonrpc": "2.0",
  "id": 1,
  "method": "initialize",
  "params": {
    "protocolVersion": "2025-06-18",
    "capabilities": {},
    "clientInfo": {
      "name": "Cursor",
      "version": "2.1.32"
    }
  }
}

Response:

{
  "jsonrpc": "2.0",
  "id": 1,
  "result": {
    "protocolVersion": "2025-06-18",
    "capabilities": {
      "tools": { "listChanged": false },
      "prompts": {},
      "resources": {}
    },
    "serverInfo": {
      "name": "mcp-random-tools",
      "version": "1.0.0"
    }
  }
}

2. notifications/initialized

Client notifies server that initialization is complete. No response required (return HTTP 204).

{
  "jsonrpc": "2.0",
  "method": "notifications/initialized"
}

3. tools/list

Returns available tools with their schemas.

Request:

{
  "jsonrpc": "2.0",
  "id": 2,
  "method": "tools/list"
}

Response:

{
  "jsonrpc": "2.0",
  "id": 2,
  "result": {
    "tools": [
      {
        "name": "random_number",
        "description": "Generate a random integer between min and max",
        "inputSchema": {
          "type": "object",
          "properties": {
            "min": { "type": "integer", "description": "Minimum value" },
            "max": { "type": "integer", "description": "Maximum value" }
          },
          "required": ["min", "max"]
        }
      }
    ]
  }
}

4. tools/call

Executes a tool and returns the result.

Request:

{
  "jsonrpc": "2.0",
  "id": 3,
  "method": "tools/call",
  "params": {
    "name": "random_number",
    "arguments": {
      "min": 1,
      "max": 100
    }
  }
}

Response: ⚠️ Important: Results must be in content array format with isError field!

{
  "jsonrpc": "2.0",
  "id": 3,
  "result": {
    "content": [
      {
        "type": "text",
        "text": "42"
      }
    ],
    "isError": false
  }
}

The content array can contain multiple items with different types:

  • text — Plain text result
  • image — Base64 encoded image with mimeType
  • resource — Reference to a resource URI

The isError field indicates whether the tool execution failed. Even if the HTTP request succeeds (200), the tool itself may have encountered an error.

Reference: MCP Specification 2025-06-18

5. resources/list & prompts/list

Return empty arrays if not implemented:

{
  "jsonrpc": "2.0",
  "id": 4,
  "result": {
    "resources": []
  }
}
{
  "jsonrpc": "2.0",
  "id": 5,
  "result": {
    "prompts": []
  }
}

Reference: Tools - MCP Specification


Cursor Integration Flow

Configuration File

Add your MCP server to ~/.cursor/mcp.json:

{
  "mcpServers": {
    "Local Flask MCP Server": {
      "headers": {},
      "url": "http://127.0.0.1:5050/"
    }
  }
}

Communication Flow

┌──────────────────────────────────────────────────────────────────────────────┐
│                        CURSOR ←→ MCP SERVER FLOW                             │
└──────────────────────────────────────────────────────────────────────────────┘

    CURSOR                                              MCP SERVER
       │                                                     │
       │  ┌─────────────────────────────────────────────┐   │
       │  │ PHASE 1: INITIALIZATION                     │   │
       │  └─────────────────────────────────────────────┘   │
       │                                                     │
       │──── POST initialize ──────────────────────────────►│
       │     { protocolVersion, clientInfo, capabilities }   │
       │                                                     │
       │◄─── 200 OK ───────────────────────────────────────│
       │     { protocolVersion, serverInfo, capabilities }   │
       │                                                     │
       │──── POST notifications/initialized ───────────────►│
       │                                                     │
       │◄─── 204 No Content ────────────────────────────────│
       │                                                     │
       │  ┌─────────────────────────────────────────────┐   │
       │  │ PHASE 2: DISCOVERY                          │   │
       │  └─────────────────────────────────────────────┘   │
       │                                                     │
       │──── POST tools/list ──────────────────────────────►│
       │◄─── 200 OK { tools: [...] } ───────────────────────│
       │                                                     │
       │──── POST resources/list ──────────────────────────►│
       │◄─── 200 OK { resources: [] } ──────────────────────│
       │                                                     │
       │──── POST prompts/list ────────────────────────────►│
       │◄─── 200 OK { prompts: [] } ────────────────────────│
       │                                                     │
       │  ┌─────────────────────────────────────────────┐   │
       │  │ PHASE 3: TOOL EXECUTION (on demand)         │   │
       │  └─────────────────────────────────────────────┘   │
       │                                                     │
       │──── POST tools/call ──────────────────────────────►│
       │     { name: "random_number", arguments: {...} }     │
       │                                                     │
       │◄─── 200 OK ────────────────────────────────────────│
       │     { content: [...], isError: false }              │
       │                                                     │

What Happens When Cursor Starts

  1. Cursor reads ~/.cursor/mcp.json to discover configured MCP servers
  2. Sends initialize request to each server to establish connection
  3. Server responds with its capabilities (tools, resources, prompts)
  4. Cursor sends notifications/initialized to confirm handshake complete
  5. Cursor queries metadata via tools/list, resources/list, prompts/list
  6. Tools become available for the AI model to invoke during conversations

Transport: Stateless HTTP

This Flask implementation uses Stateless HTTP transport (simple POST requests). This is suitable for:

  • Simple tool servers
  • Dockerized or remote deployments
  • Servers that don't need bidirectional communication

Limitations of Stateless HTTP:

  • ❌ No server-initiated notifications (logging, progress updates)
  • ❌ No sampling (server asking the AI for information)
  • ❌ No real-time bidirectional communication

For full bidirectional features, you would need SSE (Server-Sent Events) or WebSocket transport.

Reference: MCP Transports


Server Architecture

┌─────────────────────────────────────────────────────────────┐
│                      MCP SERVER                             │
├─────────────────────────────────────────────────────────────┤
│                                                             │
│   ┌─────────────┐    ┌─────────────┐    ┌─────────────┐    │
│   │   Tools     │    │  Resources  │    │   Prompts   │    │
│   │             │    │             │    │             │    │
│   │ • random_   │    │ • files     │    │ • templates │    │
│   │   number    │    │ • databases │    │ • workflows │    │
│   │ • random_   │    │ • APIs      │    │             │    │
│   │   sentence  │    │             │    │             │    │
│   └─────────────┘    └─────────────┘    └─────────────┘    │
│          │                  │                  │            │
│          └──────────────────┴──────────────────┘            │
│                             │                               │
│                    ┌────────▼────────┐                      │
│                    │  JSON-RPC 2.0   │                      │
│                    │    Handler      │                      │
│                    └────────┬────────┘                      │
│                             │                               │
│                    ┌────────▼────────┐                      │
│                    │   HTTP/Flask    │                      │
│                    │   POST /        │                      │
│                    └─────────────────┘                      │
│                                                             │
└─────────────────────────────────────────────────────────────┘

Running the Server

# Install dependencies
pip install flask

# Run the server
flask run --port 5050

# Or with debug mode
FLASK_DEBUG=1 flask run --port 5050

Error Handling

Return proper JSON-RPC error responses:

{
  "jsonrpc": "2.0",
  "id": 1,
  "error": {
    "code": -32601,
    "message": "Method not found"
  }
}

Standard error codes:

Code Message
-32700 Parse error
-32600 Invalid Request
-32601 Method not found
-32602 Invalid params
-32603 Internal error

References

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选