Florentine.ai MCP Server

Florentine.ai MCP Server

Enables natural language querying of MongoDB data by transforming AI agent questions into MongoDB aggregations. Supports secure data separation, semantic vector search, and advanced lookup capabilities for database interactions.

Category
访问服务器

README

Florentine.ai MCP Server

The Florentine.ai Model Context Protocol (MCP) server lets you integrate natural language querying for your MongoDB data directly into your custom AI Agent or AI Desktop App.

Questions are forwarded by the AI Agent to the MCP Server, transformed into MongoDB aggregations and the aggregation results are returned to the agent for further processing.

Also has a couple of extra features under the hood, e.g.:

  • Secure data separation
  • Semantic vector search/RAG support with automated embedding creation
  • Advanced lookup support
  • Exclusion of keys

Prerequisites

  • Node.js >= v18.0.0
  • A Florentine.ai account (create a free account here)
  • A connected database and at least one analyzed and activated collection in your Florentine.ai account
  • A Florentine.ai API Key (you can find yours on your account dashboard)

Installation

A detailed documentation can be found here in our docs.

You can easily run the server using npx. See the following example for Claude Desktop (claude_desktop_config.json):

{
  "mcpServers": {
    "florentine": {
      "command": "npx",
      "args": ["-y", "@florentine-ai/mcp", "--mode", "static"],
      "env": {
        "FLORENTINE_TOKEN": "<FLORENTINE_API_KEY>"
      }
    }
  }
}

Available Tools

  • florentine_list_collections --> Lists all currently active collections that can be queried. That includes descriptions, keys and type of values.
  • florentine_ask --> Receives a question and returns an aggregation, aggregation result or answer (depending on the returnTypes setting).

Arguments

Variable Required Allowed values Description
--mode Yes static, dynamic static (for existing external MCP clients, e.g. Claude Desktop) or dynamic (for own custom MCP clients). See detailed docs.
--debug No true Enables logging to external file. If set requires --logpath to be set as well.
--logpath No Absolute log file path, e.g. /Users/USERNAME/logs/florentine-mcp.log File path to the debug log. If set requires --debug to be set as well.

Environment Variables

Variable Required Allowed values Description
FLORENTINE_TOKEN Yes Florentine.ai API Key `Your Florentine.ai API key. Can be found on your account dashboard.
LLM_SERVICE No openai, anthropic, google, deepseek The LLM service to use for the requests. Only needed if you did not add service and key in your Florentine.ai account.
LLM_KEY No LLM API Key The API key of the LLM service to use for the requests. Only needed if you did not add service and key in your Florentine.ai account.
SESSION_ID No Any string A session identifier that enables server side chat history. See detailed docs.
RETURN_TYPES No Stringified JSON array with any combination of aggregation, result, answer Defines the return values of the florentine_ask tool. Defaults to result. See detailed docs.
REQUIRED_INPUTS No Stringified JSON array of all required inputs. Defines the required inputs values of the florentine_ask tool. See detailed docs.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选