FluffOS MCP Server
Enables AI assistants to validate LPC code and examine compiled bytecode using FluffOS driver tools, providing real driver-level compilation checking and performance analysis for MUD development.
README
FluffOS MCP Server
Real driver validation for LPC development - An MCP server that wraps FluffOS CLI tools to provide actual driver-level validation and debugging.
This MCP server exposes FluffOS's powerful CLI utilities (symbol and lpcc) to AI assistants, enabling them to validate LPC code against the actual driver and examine compiled bytecode.
What This Enables
✨ AI assistants can now:
- Validate LPC files using the actual FluffOS driver (not just syntax checking)
- Catch runtime compilation issues that static analysis misses
- Examine compiled bytecode to debug performance or behavior issues
- Understand how LPC code actually compiles
Tools
- 🔍
fluffos_validate: Validate an LPC file using FluffOS'ssymboltool - 🔬
fluffos_disassemble: Disassemble LPC to bytecode usinglpcc - 📚
fluffos_doc_lookup: Search FluffOS documentation for efuns, applies, concepts, etc.
Prerequisites
1. FluffOS Installation
You need FluffOS installed with the CLI tools available. The following binaries should exist:
symbol- For validating LPC fileslpcc- For disassembling to bytecode
2. Node.js
Node.js 16+ required:
node --version # Should be v16.0.0 or higher
3. Install Dependencies
cd /path/to/fluffos-mcp
npm install
Configuration
The server requires these environment variables:
FLUFFOS_BIN_DIR- Directory containing FluffOS binaries (symbol,lpcc)MUD_RUNTIME_CONFIG_FILE- Path to your FluffOS config file (e.g.,/mud/lib/etc/config.test)FLUFFOS_DOCS_DIR- (Optional) Directory containing FluffOS documentation for doc lookup
Setup for Different AI Tools
Warp (Terminal)
Add to your Warp MCP configuration:
Location: Settings → AI → Model Context Protocol
{
"fluffos": {
"command": "node",
"args": ["/absolute/path/to/fluffos-mcp/index.js"],
"env": {
"FLUFFOS_BIN_DIR": "/path/to/fluffos/bin",
"MUD_RUNTIME_CONFIG_FILE": "/mud/lib/etc/config.test",
"FLUFFOS_DOCS_DIR": "/path/to/fluffos/docs"
}
}
}
Important: Use absolute paths!
Restart Warp after adding the configuration.
Claude Desktop
Add to ~/Library/Application Support/Claude/claude_desktop_config.json (macOS) or equivalent:
{
"mcpServers": {
"fluffos": {
"command": "node",
"args": ["/absolute/path/to/fluffos-mcp/index.js"],
"env": {
"FLUFFOS_BIN_DIR": "/path/to/fluffos/bin",
"MUD_RUNTIME_CONFIG_FILE": "/mud/lib/etc/config.test"
}
}
}
}
Restart Claude Desktop after configuration.
Usage Examples
Once configured, you can ask your AI assistant:
"Validate this LPC file with the actual driver"
→ AI uses fluffos_validate to run symbol
"Show me the bytecode for this function"
→ AI uses fluffos_disassemble to run lpcc
"Why is this code slow?" → AI examines the disassembly to identify inefficient patterns
"What's the syntax for call_out?"
→ AI uses fluffos_doc_lookup to search documentation
"How do I use mappings?" → AI searches docs for mapping-related documentation
How It Works
AI Assistant
↓ (natural language)
MCP Protocol
↓ (tool calls: fluffos_validate, fluffos_disassemble)
This Server
↓ (spawns: symbol, lpcc)
FluffOS CLI Tools
↓ (validates/compiles with actual driver)
Your LPC Code
- AI assistant sends MCP tool requests
- Server spawns appropriate FluffOS CLI tool
- CLI tool validates/disassembles using the driver
- Server returns results to AI
- AI understands your code at the driver level!
Complementary Tools
This server works great alongside:
- lpc-mcp - Language server integration for code intelligence
- VS Code with jlchmura's LPC extension - IDE support
Use them together for the complete LPC development experience!
Contributing
PRs welcome! This is a simple wrapper that can be extended with more FluffOS tools.
Credits
- FluffOS Team - For the amazing driver and CLI tools
- Model Context Protocol - Making this integration possible
License
Unlicense - Public Domain. Do whatever you want with this code.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。