Flux
An AI-powered MCP server that enables natural language interaction with AO (Arweave Operating system) for creating, running, and testing code and handlers without manual coding.
Tools
send-message-to-process
add
spawn
apm-install
load-token-blueprint
create-sqlite-based-handler
transaction
run-lua-in-process
load-blueprint
load-local-blueprint
load-official-blueprint
list-available-handlers
create-handler
run-handler-using-handler-name
README
Flux
AI based AO tool calling on steroids that integrates with your existing tools and editor using a MCP server.
https://github.com/user-attachments/assets/3484e2db-e7cb-479a-84a2-0b399e1149ac
Features Implemented
- Run AO code using just natural language
- Create and run custom AO code/blueprints completely using natural language
- Integrates with your existing AI dev tools like Cursor, Windsurf, Claude, and anything that supports MCP tool calling
- Can test out all the code it pushes to an process
- Can create and test complex handlers
Features to be implemented
- Inetgration with AO ecosystem tools
- Better code generation capabilities by adding more context about AO
Tech stack
- AO
- Arweave
- MCP typescript sdk
- Typescript
- Node.js
Installation
There are currently two ways to install and use Flux, right now it has been tested significantly only on Cursor so we will be showing how to install FLux in Cursor -
-
Local Setup - For users who want everything to be present locally, no remote servers involved
- Make sure you have latest stable version of NODE.js installed - Node.js download
- Copy the content of the file local/index.js to your local machine in any folder and copy the absolute path
- Open Cursor and go to Settings > Cursor Settings > MCP > Add new MCP tool
- Paste this code in the file
"mcpServers": { "flux": { "command": "node /path/to/your/local/index.js", } } - if you did everything correctly you will be able to see the flux MCP loaded with all the tools, and its ready to be used in Cursor!

-
Remote Setup - For users who want to use Flux without installing anything locally
- Open Cursor and go to Settings > Cursor Settings > MCP > Add new MCP tool
- Paste this code in the file
"mcpServers": { "flux": { "url": "https://flux-2esw.onrender.com/sse", } } - if you did everything correctly you will be able to see the flux MCP loaded with all the tools, and its ready to be used in Cursor!

Usage
We would suggest you add the llms.txt for AO docs in cursor first and use it as a context before you start using the MCP server. If you don't know how to do it, checkoout this documentation on how to add docs to cursor.
The more context you give to cursor, the more acurate the responses will be.
Now add these custom rules in your Cursor project to make sure Cursor doesn't hallucinate or give wrong responses. You can add these rules in the Settings > Cursor Settings > Rules > Add new rule.
For adding json capabilities ONLY IF NEEDED, you need to add a line "local json = require("json")" on top of file. BUT DONT USE IT UNLESS NEEDED. SIMPLE THINGS CAN BE DONE USING AO PROCESS STATE
Always use Send instead of msg.reply
Always make sure a handler is sending out a response/reply (using Send) and send it as data as well instaed of just returning using tags
Never add any tags by yourself, always add tags when needed or instructed by user, also {"Action":"Eval"} tag is for running lua in an ao process and {"Action" : "action_name"} is for running a handler
Never add the "Type" tag to anything, thats reserved for internal ao specifications
Always use Handler.utils whever possible when creating a handler, for example --
Handlers.add(
"pingpong",
Handlers.utils.hasMatchingTag("Action", "Ping"),
function (msg)
Handlers.utils.reply("Pong")(msg) -- or use Send() here
end
)
Now you can start using the Flux MCP server in Cursor Agents.
Support
If you find any issues with the Server or encounter any bugs, please let us know by opening an issue or mailing us @ flux.mcp@gamil.com
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。