Forecast Storage MCP Server

Forecast Storage MCP Server

Enables storing and retrieving weather forecasts with text and audio in Google Cloud SQL PostgreSQL, supporting full internationalization, TTL-based caching, and automatic expiration management.

Category
访问服务器

README

Forecast Storage MCP Server

A Model Context Protocol (MCP) server for storing weather forecasts in Google Cloud SQL PostgreSQL.

Features

  • Binary storage for text and audio with unicode support
  • Full internationalization - supports all languages (English, Spanish, Chinese, Japanese, Arabic, etc.)
  • TTL-based caching with automatic expiration
  • Cloud SQL integration with secure connections
  • Storage statistics and per-city breakdown
  • Automatic encoding detection (utf-8, utf-16, utf-32)

Setup

1. Create Cloud SQL Instance

# Create PostgreSQL instance
gcloud sql instances create weather-forecasts \
  --database-version=POSTGRES_17 \
  --tier=db-f1-micro \
  --region=us-central1 \
  --enable-auto-scaling \
  --auto-scaling-min-cpu=1 \
  --auto-scaling-max-cpu=2

# Create database
gcloud sql databases create weather \
  --instance=weather-forecasts

# Set password for postgres user
gcloud sql users set-password postgres \
  --instance=weather-forecasts \
  --password=YOUR_SECURE_PASSWORD

2. Apply Database Schema

# Get the instance IP (or use Cloud SQL Proxy)
gcloud sql instances describe weather-forecasts --format="value(ipAddresses[0].ipAddress)"

# Apply schema
psql -h INSTANCE_IP -U postgres -d weather -f schema.sql

3. Configure Environment

# Copy example environment file
cp .env.example .env

# Edit .env with your values
# GCP_PROJECT_ID=your-project-id
# CLOUD_SQL_PASSWORD=your-secure-password

4. Install Dependencies

pip install -r requirements.txt

5. Run MCP Server

python server.py

MCP Tools

1. upload_forecast

Upload a complete forecast (text + audio) to Cloud SQL.

{
  "city": "chicago",
  "forecast_text": "Weather in Chicago: Sunny, 75°F",
  "audio_data": "<base64-encoded-wav-audio-data>",
  "forecast_at": "2025-12-26T15:00:00Z",
  "ttl_minutes": 30,
  "language": "en",
  "locale": "en-US"
}

Note: audio_data should be base64-encoded WAV audio data, not a file path. This allows the MCP server to work in remote/containerized environments.

2. get_cached_forecast

Retrieve cached forecast if available and not expired.

{
  "city": "chicago",
  "language": "en"
}

Returns:

  • cached: true/false
  • forecast_text: decoded unicode text
  • audio_data: base64-encoded audio
  • age_seconds: age of cached forecast

3. cleanup_expired_forecasts

Remove expired forecasts from database.

{}

4. get_storage_stats

Get database storage statistics.

{}

Returns:

  • Total forecasts
  • Storage sizes
  • Encodings used
  • Languages used
  • Per-city breakdown

5. list_forecasts

List forecast history.

{
  "city": "chicago",
  "limit": 10
}

6. test_connection

Test database connection.

{}

Integration with Weather Agent

The MCP server is designed to integrate with the weather agent system. See the main project README for integration details.

Database Schema

The forecasts table stores:

  • Binary text (BYTEA) with encoding metadata
  • Binary audio (BYTEA)
  • Unicode support (utf-8, utf-16, utf-32)
  • Internationalization (language, locale)
  • TTL management (forecast_at, expires_at)
  • Storage metadata (sizes, encoding, metadata JSONB)

Development

Testing Connection

# Run test connection
python -c "from tools.connection import test_connection; import json; print(json.dumps(test_connection(), indent=2))"

Running Tests

# Add tests in tests/ directory
pytest tests/

Troubleshooting

Connection Issues

  1. Verify Cloud SQL instance is running
  2. Check firewall rules allow connections
  3. Verify credentials in .env file
  4. Test with test_connection tool

Encoding Issues

  • Default encoding is utf-8 (works for most languages)
  • Use utf-16 for heavy CJK (Chinese/Japanese/Korean) text
  • Encoding is auto-detected if not specified

Cost Estimation

Development (db-f1-micro):

  • Instance: ~$7/month (with auto-pause: ~$3.50/month)
  • Storage (10GB): ~$1.70/month
  • Total: ~$5-9/month

Production (db-custom-2-7680):

  • Instance: ~$130/month (with auto-pause: ~$65/month)
  • Storage (50GB): ~$8.50/month
  • Total: ~$70-140/month

License

Part of the weather-lab project.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选