Formula One MCP Server
A Model Context Protocol server that provides comprehensive Formula One racing data, enabling access to event schedules, driver information, telemetry data, race results, and performance analytics through natural language queries.
Tools
get_event_schedule
Get Formula One race calendar for a specific season
get_event_info
Get detailed information about a specific Formula One Grand Prix
get_session_results
Get results for a specific Formula One session
get_driver_info
Get information about a specific Formula One driver
analyze_driver_performance
Analyze a driver's performance in a Formula One session
compare_drivers
Compare performance between multiple Formula One drivers
get_telemetry
Get telemetry data for a specific Formula One lap
get_championship_standings
Get Formula One championship standings
README
Formula One MCP Server
A Model Context Protocol (MCP) server that provides Formula One racing data. This package exposes various tools for querying F1 data including event schedules, driver information, telemetry data, and race results.
<a href="https://glama.ai/mcp/servers/@Machine-To-Machine/f1-mcp-server"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@Machine-To-Machine/f1-mcp-server/badge" alt="Formula One Server (Python) MCP server" /> </a>
Features
- Event Schedule: Access the complete F1 race calendar for any season
- Event Information: Detailed data about specific Grand Prix events
- Session Results: Comprehensive results from races, qualifying sessions, sprints, and practice sessions
- Driver Information: Access driver details for specific sessions
- Performance Analysis: Analyze a driver's performance with lap time statistics
- Driver Comparison: Compare multiple drivers' performances in the same session
- Telemetry Data: Access detailed telemetry for specific laps
- Championship Standings: View driver and constructor standings for any season
Installation
Installing via Smithery
To install f1-mcp-server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @Machine-To-Machine/f1-mcp-server --client claude
Manual Installation
In a uv managed python project, add to dependencies by:
uv add f1-mcp-server
Alternatively, for projects using pip for dependencies:
pip install f1-mcp-server
To run the server inside your project:
uv run f1-mcp-server
Or to run it globally in isolated environment:
uvx f1-mcp-server
To install directly from the source:
git clone https://github.com/Machine-To-Machine/f1-mcp-server.git
cd f1-mcp-server
pip install -e .
Usage
Command Line
The server can be run in two modes:
Standard I/O mode (default):
uvx run f1-mcp-server
SSE transport mode (for web applications):
uvx f1-mcp-server --transport sse --port 8000
Python API
from f1_mcp_server import main
# Run the server with default settings
main()
# Or with SSE transport settings
main(port=9000, transport="sse")
API Documentation
The server exposes the following tools via MCP:
| Tool Name | Description |
|---|---|
get_event_schedule |
Get Formula One race calendar for a specific season |
get_event_info |
Get detailed information about a specific Formula One Grand Prix |
get_session_results |
Get results for a specific Formula One session |
get_driver_info |
Get information about a specific Formula One driver |
analyze_driver_performance |
Analyze a driver's performance in a Formula One session |
compare_drivers |
Compare performance between multiple Formula One drivers |
get_telemetry |
Get telemetry data for a specific Formula One lap |
get_championship_standings |
Get Formula One championship standings |
See the FastF1 documentation for detailed information about the underlying data: FastF1 Documentation
Dependencies
- anyio (>=4.9.0)
- click (>=8.1.8)
- fastf1 (>=3.5.3)
- mcp (>=1.6.0)
- numpy (>=2.2.4)
- pandas (>=2.2.3)
- uvicorn (>=0.34.0)
Development
Setup Development Environment
git clone https://github.com/Machine-To-Machine/f1-mcp-server.git
cd f1-mcp-server
uv venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
uv pip install -e ".[dev]"
Code Quality
# Run linting
uv run ruff check .
# Run formatting check
uv run ruff format --check .
# Run security checks
uv run bandit -r src/
Contribution Guidelines
- Fork the repository
- Create a feature branch:
git checkout -b feature-name - Commit your changes:
git commit -am 'Add some feature' - Push to the branch:
git push origin feature-name - Submit a pull request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Authors
- Machine To Machine
Acknowledgements
This project leverages FastF1, an excellent Python package for accessing Formula 1 data. We are grateful to its maintainers and contributors.
This project was inspired by rakeshgangwar/f1-mcp-server which was written in TypeScript. The f1_data.py module was mostly adapted from their source code.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。