Freesound MCP Server

Freesound MCP Server

Integrates with Freesound.org to enable searching, discovering, and previewing audio content such as sound effects and music loops. It provides detailed metadata and licensing information to support video editing and content creation workflows.

Category
访问服务器

README

Freesound MCP Server

A Model Context Protocol (MCP) server that integrates with Freesound.org, enabling AI agents to search and discover audio content for video editing and content creation workflows.

Features

The Freesound MCP Server enables AI assistants to:

  • Search Audio Content: Find sound effects, ambient sounds, and music loops using natural language queries
  • Access Metadata: Get detailed information about audio files including duration, tags, licensing, and descriptions
  • Preview Content: Access preview URLs for immediate audio playback evaluation
  • License Compliance: Retrieve licensing information to ensure proper attribution and usage rights

Installation

Prerequisites

You will need to obtain a Freesound API key:

  1. Create an account at Freesound.org
  2. Apply for an API key at https://freesound.org/api/apply/
  3. Once approved, note your API key for configuration

Docker Installation (Recommended)

The easiest way to run the Freesound MCP Server is using Docker. No local Python installation required.

Setup

  1. Clone the repository:
git clone https://github.com/johnkimdw/freesound-mcp-server.git
cd freesound-mcp-server
  1. Build docker image:
docker build -t freesound-mcp .  

Claude Desktop

Add the following configuration to your Claude Desktop config file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "freesound": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "-e",
        "FREESOUND_API_KEY",
        "freesound-mcp"
      ],
      "env": {
        "FREESOUND_API_KEY": "<YOUR_FREESOUND_API_KEY>"
      }
    }
  }
}

Local Installation

If you prefer not to use Docker, you can install and run the server locally using Python and uv.

Requirements

  • Python 3.10+
  • uv package manager

Setup

  1. Clone the repository:
git clone https://github.com/johnkimdw/freesound-mcp-server.git
cd freesound-mcp-server
  1. Install dependencies:
uv sync
  1. Set your API key:
export FREESOUND_API_KEY=your_api_key_here

Claude Desktop Configuration

{
  "mcpServers": {
    "freesound": {
      "command": "/path/to/uv",
      "args": [
        "--directory",
        "/path/to/freesound-mcp-server",
        "run",
        "freesound-mcp"
      ],
      "env": {
        "FREESOUND_API_KEY": "<YOUR_FREESOUND_API_KEY>"
      }
    }
  }
}

Usage

Once configured, you can interact with the Freesound MCP Server through your AI assistant. Here are some example queries:

  • "Find thunder sound effects for a storm scene"
  • "Search for ambient city sounds under 30 seconds"
  • "Look for piano music loops with Creative Commons licensing"
  • "Find dog barking sound effects"
  • "Search for ocean waves background audio"

Available Tools

search_sounds

Search for audio files on Freesound.org using natural language queries.

Parameters:

  • query (string, required): Search terms for audio content
  • max_results (integer, optional): Number of results to return (1-30, default: 10)

Returns:

  • Audio file metadata including:
    • File name and description
    • Duration and file format
    • Tags and categories
    • License information
    • Preview URLs (high and low quality)
    • Uploader information
    • Direct links to Freesound.org pages

Transport Options

The server supports multiple transport methods for different deployment scenarios:

Stdio Transport (Default)

Used for local integration with Claude Desktop and other MCP clients:

uv run freesound-mcp
# python -m freesound_mcp.server --transport stdio

<!--

HTTP Transport

For web integration or custom deployments:

python -m freesound_mcp.server --transport http --port 8000

Streamable HTTP Transport

For advanced streaming scenarios:

python -m freesound_mcp.server --transport streamable-http --port 8000
``` -->

## Development

### Building from Source

```bash
# Clone the repository
git clone https://github.com/yourname/freesound-mcp-server.git
cd freesound-mcp-server

# Install dependencies
uv sync

# Run tests
uv run pytest

# Build Docker image
docker build -t freesound-mcp .

Testing

Use the MCP Inspector for detailed debugging:

npx @modelcontextprotocol/inspector uv run freesound-mcp

Licensing and Attribution

This MCP server respects Freesound.org's terms of service and API usage guidelines. All audio content retrieved through this server:

  • Originates from Freesound.org and is subject to their licensing terms
  • Requires proper attribution as specified by individual file licenses
  • Should be used in compliance with Creative Commons and other applicable licenses

Important: Always review the licensing information provided with each audio file to ensure compliance with attribution requirements and usage restrictions.

Error Handling

The server includes comprehensive error handling for common scenarios:

  • Invalid API Key: Clear error messages when authentication fails
  • Rate Limiting: Automatic handling of API rate limits with appropriate error responses
  • Network Issues: Timeout handling and connection error management
  • Invalid Queries: Input validation and sanitization

Configuration

Environment Variables

  • FREESOUND_API_KEY (required): Your Freesound.org API key

Advanced Configuration

For advanced users, additional configuration options are available through command-line arguments:

python -m freesound_mcp.server --help

License

This project is licensed under the MIT License - see the LICENSE file for details.

The audio content accessed through this server is provided by Freesound.org and is subject to individual Creative Commons and other open licenses as specified by content creators.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选