Frontmatter MCP
Enables querying and updating Markdown frontmatter metadata using DuckDB SQL, with optional semantic search capabilities for finding similar documents based on content.
README
frontmatter-mcp
An MCP server for querying Markdown frontmatter with DuckDB SQL.
Configuration
{
"mcpServers": {
"frontmatter": {
"command": "uvx",
"args": ["frontmatter-mcp"],
"env": {
"FRONTMATTER_BASE_DIR": "/path/to/markdown/directory"
}
}
}
}
With Semantic Search
To enable semantic search, use the [semantic] extras:
{
"mcpServers": {
"frontmatter": {
"command": "uvx",
"args": ["--from", "frontmatter-mcp[semantic]", "frontmatter-mcp"],
"env": {
"FRONTMATTER_BASE_DIR": "/path/to/markdown/directory",
"FRONTMATTER_ENABLE_SEMANTIC": "true"
}
}
}
}
Installation (Optional)
If you prefer to install globally:
pip install frontmatter-mcp
# or
uv tool install frontmatter-mcp
Tools
query_inspect
Get schema information from frontmatter across files.
| Parameter | Type | Description |
|---|---|---|
glob |
string | Glob pattern relative to base directory |
Example:
// Input
{ "glob": "**/*.md" }
// Output
{
"file_count": 186,
"schema": {
"date": { "type": "string", "count": 180, "nullable": true },
"tags": { "type": "array", "count": 150, "nullable": true }
}
}
// Output (with semantic search ready)
{
"file_count": 186,
"schema": {
"date": { "type": "string", "count": 180, "nullable": true },
"tags": { "type": "array", "count": 150, "nullable": true },
"embedding": { "type": "FLOAT[256]", "nullable": false }
}
}
query
Query frontmatter data with DuckDB SQL.
| Parameter | Type | Description |
|---|---|---|
glob |
string | Glob pattern relative to base directory |
sql |
string | DuckDB SQL query referencing files table |
Example:
// Input
{
"glob": "**/*.md",
"sql": "SELECT path, date FROM files WHERE date >= '2025-11-01' ORDER BY date DESC"
}
// Output
{
"columns": ["path", "date"],
"row_count": 24,
"results": [
{"path": "daily/2025-11-28.md", "date": "2025-11-28"},
{"path": "daily/2025-11-27.md", "date": "2025-11-27"}
]
}
update
Update frontmatter properties in a single file.
| Parameter | Type | Description |
|---|---|---|
path |
string | File path relative to base directory |
set |
object | Properties to add or overwrite |
unset |
string[] | Property names to remove |
Example:
// Input
{ "path": "notes/idea.md", "set": {"status": "published"} }
// Output
{ "path": "notes/idea.md", "frontmatter": {"title": "Idea", "status": "published"} }
batch_update
Update frontmatter properties in multiple files.
| Parameter | Type | Description |
|---|---|---|
glob |
string | Glob pattern relative to base directory |
set |
object | Properties to add or overwrite |
unset |
string[] | Property names to remove |
Example:
// Input
{ "glob": "drafts/*.md", "set": {"status": "review"} }
// Output
{ "updated_count": 5, "updated_files": ["drafts/a.md", "drafts/b.md", ...] }
batch_array_add
Add a value to an array property in multiple files.
| Parameter | Type | Description |
|---|---|---|
glob |
string | Glob pattern relative to base directory |
property |
string | Name of the array property |
value |
any | Value to add |
allow_duplicates |
bool | Allow duplicate values (default: false) |
Example:
// Input
{ "glob": "**/*.md", "property": "tags", "value": "reviewed" }
// Output
{ "updated_count": 42, "updated_files": ["a.md", "b.md", ...] }
batch_array_remove
Remove a value from an array property in multiple files.
| Parameter | Type | Description |
|---|---|---|
glob |
string | Glob pattern relative to base directory |
property |
string | Name of the array property |
value |
any | Value to remove |
Example:
// Input
{ "glob": "**/*.md", "property": "tags", "value": "draft" }
// Output
{ "updated_count": 15, "updated_files": ["a.md", "b.md", ...] }
batch_array_replace
Replace a value in an array property in multiple files.
| Parameter | Type | Description |
|---|---|---|
glob |
string | Glob pattern relative to base directory |
property |
string | Name of the array property |
old_value |
any | Value to replace |
new_value |
any | New value |
Example:
// Input
{ "glob": "**/*.md", "property": "tags", "old_value": "draft", "new_value": "review" }
// Output
{ "updated_count": 10, "updated_files": ["a.md", "b.md", ...] }
batch_array_sort
Sort an array property in multiple files.
| Parameter | Type | Description |
|---|---|---|
glob |
string | Glob pattern relative to base directory |
property |
string | Name of the array property |
reverse |
bool | Sort in descending order (default: false) |
Example:
// Input
{ "glob": "**/*.md", "property": "tags" }
// Output
{ "updated_count": 20, "updated_files": ["a.md", "b.md", ...] }
batch_array_unique
Remove duplicate values from an array property in multiple files.
| Parameter | Type | Description |
|---|---|---|
glob |
string | Glob pattern relative to base directory |
property |
string | Name of the array property |
Example:
// Input
{ "glob": "**/*.md", "property": "tags" }
// Output
{ "updated_count": 5, "updated_files": ["a.md", "b.md", ...] }
index_status
Get the status of the semantic search index.
This tool is only available when FRONTMATTER_ENABLE_SEMANTIC=true.
Example:
// Output (not started)
{ "state": "idle" }
// Output (indexing in progress)
{ "state": "indexing" }
// Output (ready)
{ "state": "ready" }
index_refresh
Refresh the semantic search index (differential update).
This tool is only available when FRONTMATTER_ENABLE_SEMANTIC=true.
Example:
// Output
{ "state": "indexing", "message": "Indexing started", "target_count": 665 }
// Output (when already indexing)
{ "state": "indexing", "message": "Indexing already in progress" }
Technical Notes
All Values Are Strings
All frontmatter values are passed to DuckDB as strings. Use TRY_CAST in SQL for type conversion when needed.
SELECT * FROM files
WHERE TRY_CAST(date AS DATE) >= '2025-11-01'
Arrays Are JSON Strings
Arrays like tags: [ai, python] are stored as JSON strings '["ai", "python"]'. Use from_json() and UNNEST to expand them.
SELECT path, tag
FROM files, UNNEST(from_json(tags, '[""]')) AS t(tag)
WHERE tag = 'ai'
Templater Expression Support
Files containing Obsidian Templater expressions (e.g., <% tp.date.now("YYYY-MM-DD") %>) are handled gracefully. These expressions are treated as strings and naturally excluded by date filtering.
Semantic Search
When semantic search is enabled, you can use the embed() function and embedding column in SQL queries. After running index_refresh, the markdown body content is indexed as vectors.
-- Find semantically similar documents
SELECT path, 1 - array_cosine_distance(embedding, embed('feeling better')) as score
FROM files
ORDER BY score DESC
LIMIT 10
-- Combine with frontmatter filters
SELECT path, date, 1 - array_cosine_distance(embedding, embed('motivation')) as score
FROM files
WHERE date >= '2025-11-01'
ORDER BY score DESC
LIMIT 10
Environment variables:
| Variable | Default | Description |
|---|---|---|
| FRONTMATTER_BASE_DIR | (required) | Base directory for files |
| FRONTMATTER_ENABLE_SEMANTIC | false | Enable semantic search |
| FRONTMATTER_EMBEDDING_MODEL | cl-nagoya/ruri-v3-30m | Embedding model name |
| FRONTMATTER_CACHE_DIR | FRONTMATTER_BASE_DIR/.frontmatter-mcp | Cache directory for embeddings |
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。