GCP MCP Server
Enables AI assistants to interact with Google Cloud Platform services for log analysis and root cause investigation. Provides tools to query Cloud Logging, detect error patterns, and perform real-time log streaming across multiple GCP projects.
README
GCP MCP Server
A Model Context Protocol (MCP) server for Google Cloud Platform (GCP) that enables AI assistants to interact with GCP services, particularly focused on log analysis and root cause investigation.
Features
- Cloud Logging Integration: Query and analyze GCP Cloud Logging data
- Real-time Log Streaming: Stream logs for immediate analysis
- Error Pattern Detection: Identify common error patterns and anomalies
- Multi-Project Support: Work across multiple GCP projects
- Secure Authentication: Uses GCP service account credentials
- Root Cause Analysis: Tools to help with quick RC findings
Supported GCP Services
- Cloud Logging: Query, filter, and analyze logs
- Cloud Monitoring: Retrieve metrics and alerts (planned)
- Error Reporting: Access error statistics and details (planned)
- Cloud Trace: Distributed tracing analysis (planned)
Installation
⚡ Quick Install
git clone https://github.com/JayRajGoyal/gcp-mcp.git
cd gcp-mcp
./install.sh
Claude Code Integration (One Command!)
The easiest way to add this MCP server to Claude Code:
# If you have gcloud configured (recommended):
claude mcp add gcp-logs -e GOOGLE_APPLICATION_CREDENTIALS=/Users/$USER/.config/gcloud/application_default_credentials.json -- python3.11 -m gcp_mcp.cli --project YOUR_PROJECT_ID
Or with a service account key file:
claude mcp add gcp -- python3.11 -m gcp_mcp.cli --credentials /path/to/your/service-account-key.json
Manual Configuration (Alternative)
Add this to your Claude Code configuration:
{
"mcpServers": {
"gcp": {
"command": "python3.11",
"args": ["-m", "gcp_mcp.cli", "--credentials", "/path/to/your/credentials.json"],
"cwd": "/path/to/gcp-mcp"
}
}
}
Prerequisites
- Python 3.8 or higher
- GCP project with appropriate APIs enabled
- Service account with necessary permissions
Manual Setup
- Clone the repository:
git clone https://github.com/JayRajGoyal/gcp-mcp.git
cd gcp-mcp
- Install dependencies:
pip install -r requirements.txt
- Run with your credentials:
python -m gcp_mcp.cli --credentials /path/to/your/credentials.json
Usage
Starting the Server
python -m gcp_mcp.server
Available Tools
Log Query
Query GCP Cloud Logging with advanced filters:
query_logs(project_id, filter, limit, time_range)
Log Analysis
Analyze logs for patterns and anomalies:
analyze_logs(project_id, service_name, time_range)
Error Investigation
Find and analyze error patterns:
investigate_errors(project_id, service_name, time_range)
Configuration
Create a config.json file:
{
"default_project": "your-gcp-project-id",
"log_retention_days": 30,
"max_results": 1000,
"excluded_log_names": [
"projects/your-project/logs/cloudaudit.googleapis.com%2Fdata_access"
]
}
Authentication
The server supports multiple authentication methods:
- Service Account Key File: Set
GOOGLE_APPLICATION_CREDENTIALS - Application Default Credentials: For GCE, Cloud Shell, etc.
- User Credentials: Via
gcloud auth application-default login
Required GCP Permissions
Your service account needs the following IAM roles:
roles/logging.viewer- Read access to Cloud Loggingroles/monitoring.viewer- Read access to Cloud Monitoring (optional)roles/errorreporting.viewer- Read access to Error Reporting (optional)
Development
Running Tests
pytest tests/
Code Formatting
black gcp_mcp/
isort gcp_mcp/
Type Checking
mypy gcp_mcp/
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Run the test suite
- Submit a pull request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Security
- Never commit service account keys to the repository
- Use environment variables for sensitive configuration
- Follow GCP security best practices
- Report security vulnerabilities via email
Support
- Create an issue for bug reports or feature requests
- Check existing issues before creating new ones
- Provide detailed information including logs and configuration
Roadmap
- [ ] Cloud Monitoring integration
- [ ] Error Reporting tools
- [ ] Cloud Trace analysis
- [ ] BigQuery log export support
- [ ] Alerting and notification tools
- [ ] Dashboard generation
- [ ] Cost analysis tools
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。