Gemini Audio Upload

Gemini Audio Upload

Enables audio file analysis using Google's Gemini multimodal models with support for additional context and system instructions to guide the model's behavior.

Category
访问服务器

README

Gemini Multimodal Audio Upload

CodeRabbit Pull Request Reviews

This project provides a Model Context Protocol (MCP) server that enables audio analysis using Google's Gemini models. It allows you to upload audio files, provide optional context (JSON), and receive detailed analysis based on your prompts.

Features

  • Audio Analysis: Upload and analyze audio files (WAV, MP3, etc.) using Google Gemini.
  • Multimodal Context: Support for providing additional context via JSON files or strings.
  • System Instructions: Ability to provide system instructions (e.g., "Gem" definitions) to guide the model's behavior.
  • MCP Server: Exposes functionality as an MCP tool, making it compatible with MCP clients like Claude Desktop or VS Code extensions.

Prerequisites

  • Python 3.10 or higher
  • A Google Cloud Project with the Gemini API enabled.
  • An API key for the Gemini API.

Installation

  1. Clone the repository:

    git clone https://github.com/unscene/gemini-audio-upload.git
    cd gemini-audio-upload
    
  2. Install dependencies with uv:

    uv sync
    

Configuration

  1. Create a .env file in the root directory:

    cp .env.example .env # If .env.example exists, otherwise create new
    
  2. Add your Google API key to the .env file:

    GOOGLE_API_KEY=your_api_key_here
    

Usage

Running the MCP Server

You can run the MCP server directly using uv:

uv run gemini_audio/mcp_server.py

However, it is typically run by an MCP client.

MCP Tool: analyze_audio

The server exposes a single tool: analyze_audio.

Arguments:

  • audio_path (string, required): The absolute path to the audio file you want to analyze.
  • prompt (string, optional): The prompt to guide the analysis. Default: "Describe this audio."
  • json_path (string, optional): Path to a JSON file containing context data.
  • json_context (string, optional): A JSON string containing context data (overrides json_path).
  • instruction_file (string, optional): Path to a text file containing system instructions.
  • model (string, optional): The Gemini model to use. Default: "gemini-1.5-pro".

Example Usage (Conceptual)

If you are using an MCP client, you might ask:

"Analyze the audio file at C:\path\to\recording.wav and tell me if the speaker sounds happy."

The client would call the analyze_audio tool with:

  • audio_path: C:\path\to\recording.wav
  • prompt: "Tell me if the speaker sounds happy."

Client Configuration

Claude Desktop App

To use this server with the Claude Desktop App, add the following configuration to your claude_desktop_config.json file.

Windows Location: %APPDATA%\Claude\claude_desktop_config.json macOS Location: ~/Library/Application Support/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "gemini-audio": {
      "command": "uv",
      "args": [
        "--directory",
        "/absolute/path/to/gemini-audio-upload",
        "run",
        "gemini_audio/mcp_server.py"
      ],
      "env": {
        "GOOGLE_API_KEY": "your_api_key_here"
      }
    }
  }
}

Note: Replace /absolute/path/to/gemini-audio-upload with the actual path to where you cloned this repository. You can also set the GOOGLE_API_KEY in the .env file in the project directory instead of the config JSON, provided uv picks it up correctly or you use the python executable directly.

VS Code (MCP Extension)

If you are using an MCP extension in VS Code (like the official "Model Context Protocol" extension), you can typically configure it in your VS Code settings.json:

"mcp.servers": {
    "gemini-audio": {
        "command": "uv",
        "args": [
            "--directory",
            "C:\\absolute\\path\\to\\gemini-audio-upload",
            "run",
            "gemini_audio/mcp_server.py"
        ],
        "env": {
            "GOOGLE_API_KEY": "your_api_key_here"
        }
    }
}

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选