
Gemini DeepSearch MCP
An automated research agent that leverages Google Gemini models and Google Search to perform deep, multi-step web research, generating sophisticated queries and producing citation-rich answers.
Tools
deep_search
Perform a deep search on a given query using an advanced web research agent. Args: query: The research question or topic to investigate. effort: The amount of effect for the research, low, medium or hight (default: low). Returns: A dictionary containing the answer to the query and a list of sources used.
README
Gemini DeepSearch MCP
Gemini DeepSearch MCP is an automated research agent that leverages Google Gemini models and Google Search to perform deep, multi-step web research. It generates sophisticated queries, synthesizes information from search results, identifies knowledge gaps, and produces high-quality, citation-rich answers.
Features
- Automated multi-step research using Gemini models and Google Search
- FastMCP integration for both HTTP API and stdio deployment
- Configurable effort levels (low, medium, high) for research depth
- Citation-rich responses with source tracking
- LangGraph-powered workflow with state management
Usage
Development Server (HTTP + Studio UI)
Start the LangGraph development server with Studio UI:
make dev
Local MCP Server (stdio)
Start the MCP server with stdio transport for integration with MCP clients:
make local
Testing
Run the test suite:
make test
Test the MCP stdio server:
make test_mcp
Use MCP inspector
make inspect
With Langsmith tracing
GEMINI_API_KEY=AI******* LANGSMITH_API_KEY=ls******* LANGSMITH_TRACING=true make inspect
API
The deep_search
tool accepts:
- query (string): The research question or topic to investigate
- effort (string): Research effort level - "low", "medium", or "high"
- Low: 1 query, 1 loop, Flash model
- Medium: 3 queries, 2 loops, Flash model
- High: 5 queries, 3 loops, Pro model
Returns:
- answer: Comprehensive research response with citations
- sources: List of source URLs used in research
Requirements
- Python 3.12+
GEMINI_API_KEY
environment variable
Installation
Install directly using uvx:
uvx install gemini-deepsearch-mcp
Claude Desktop Integration
To use the MCP server with Claude Desktop, add this configuration to your Claude Desktop config file:
macOS
Edit ~/Library/Application Support/Claude/claude_desktop_config.json
:
{
"mcpServers": {
"gemini-deepsearch": {
"command": "uvx",
"args": ["gemini-deepsearch-mcp"],
"env": {
"GEMINI_API_KEY": "your-gemini-api-key-here"
},
"timeout": 180000
}
}
}
Windows
Edit %APPDATA%/Claude/claude_desktop_config.json
:
{
"mcpServers": {
"gemini-deepsearch": {
"command": "uvx",
"args": ["gemini-deepsearch-mcp"],
"env": {
"GEMINI_API_KEY": "your-gemini-api-key-here"
},
"timeout": 180000
}
}
}
Linux
Edit ~/.config/claude/claude_desktop_config.json
:
{
"mcpServers": {
"gemini-deepsearch": {
"command": "uvx",
"args": ["gemini-deepsearch-mcp"],
"env": {
"GEMINI_API_KEY": "your-gemini-api-key-here"
},
"timeout": 180000
}
}
}
Important:
- Replace
your-gemini-api-key-here
with your actual Gemini API key - Restart Claude Desktop after updating the configuration
- Set ample timeout to avoid
MCP error -32001: Request timed out
Alternative: Local Development Setup
For development or if you prefer to run from source:
{
"mcpServers": {
"gemini-deepsearch": {
"command": "uv",
"args": ["run", "python", "main.py"],
"cwd": "/path/to/gemini-deepsearch-mcp",
"env": {
"GEMINI_API_KEY": "your-gemini-api-key-here"
}
}
}
}
Replace /path/to/gemini-deepsearch-mcp
with the actual absolute path to your project directory.
Once configured, you can use the deep_search
tool in Claude Desktop by asking questions like:
- "Use deep_search to research the latest developments in quantum computing"
- "Search for information about renewable energy trends with high effort"
Agent Source
The deep search agent is from the Gemini Fullstack LangGraph Quickstart repository.
License
MIT
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。