Gemini Docs MCP Server
Provides tools to search and retrieve Google Gemini API documentation with full-text search capabilities and automatic documentation updates stored in a local SQLite database.
README
Gemini Docs MCP Server
An local STDIO MCP server that provides tools to search and retrieve Google Gemini API documentation.
- Search Documentation: Full-text search across all Gemini documentation pages.
- Get Capabilities: List available documentation pages or retrieve content for a specific page.
- Get Current Model: Quickly access documentation for current Gemini models.
- Automatic Updates: Scrapes and updates documentation on server startup.
sequenceDiagram
participant Client as MCP Client / IDE
participant Server as FastMCP Server
participant DB as SQLite Database
Client->>Server: call_tool("search_documentation", queries=["embeddings"])
Server->>DB: Full-Text Search for "embeddings"
DB-->>Server: Return matching documentation
Server-->>Client: Return formatted results
How it Works
- Ingestion: On startup, the server fetches
https://ai.google.dev/gemini-api/docs/llms.txtto get a list of all available documentation pages. - Processing: It then concurrently fetches and processes each page, extracting the text content.
- Indexing: The processed content is stored in a local SQLite database with a Full-Text Search (FTS5) index for efficient querying.
- Searching: When you use the
search_documentationtool, the server queries this SQLite database to find the most relevant documentation pages.
Installation
Option 1: Use uvx (Recommended)
You can use uvx to run the server directly without explicit installation. This is the easiest way to get started.
uvx --from git+https://github.com/philschmid/gemini-api-docs-mcp gemini-docs-mcp
Option 2: Install directly from GitHub
You can install the package directly from GitHub using pip:
pip install git+https://github.com/philschmid/gemini-api-docs-mcp.git
Option 3: Manual Installation (for development)
git clone https://github.com/philschmid/gemini-api-docs-mcp.git
cd gemini-api-docs-mcp
pip install -e .
cd ..
rm -rf gemini-api-docs-mcp
Usage
If you installed via pip (Option 2 or 3), run the server using:
gemini-docs-mcp
This will start the MCP server over stdio. It will immediately begin ingesting documentation, which might take a few moments on the first run.
Configuration
The database is stored at ~/.mcp/gemini-api-docs/database.db by default. You can override this by setting the GEMINI_DOCS_DB_PATH environment variable.
Using with an MCP Client
Configure your MCP client to run the gemini-docs-mcp command.
{
"mcpServers": {
"gemini-docs": {
"command": "uvx",
"args": ["--from", "git+https://github.com/philschmid/gemini-api-docs-mcp", "gemini-docs-mcp"]
}
}
}
{
"mcpServers": {
"gemini-docs": {
"command": "gemini-docs-mcp",
}
}
}
Tools
search_documentation(queries: list[str]): Performs a full-text search on Gemini documentation for the given list of queries (max 3).get_capability_page(capability: str = None): Get a list of capabilities or content for a specific one.get_current_model(): Get documentation for current Gemini models.
License
MIT
Test Results
We run a comprehensive evaluation harness to ensure the MCP server provides accurate and up-to-date code examples. The tests cover both Python and TypeScript SDKs.
| Metric | Value |
|---|---|
| Total Tests | 117 |
| Passed | 114 |
| Failed | 3 |
Last updated: 2025-11-03 13:29:01
You can find the detailed test results in tests/result.json.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。