gemini-image-mcp

gemini-image-mcp

gemini-image-mcp

Category
访问服务器

README

日本語版はこちら (Read in Japanese)

Gemini Image MCP Server

This is an MCP (Model Context Protocol) server that uses Google's Gemini API to generate images and save them to a specified directory. In addition to text prompts, you can optionally provide input images to guide the image generation process. Generated images are automatically compressed to reduce file size.


Features

  • Image generation from text prompts
  • (Optional) Image generation using input reference images
  • Automatic compression of generated images (JPEG, PNG)
  • Unique file name assignment to prevent file name conflicts
  • Operates as an MCP server, accepting tool calls via standard input/output

Prerequisites

  • Node.js (v18 or higher recommended)
  • Google Cloud Project with Gemini API enabled
  • Gemini API Key

Setup

Example MCP server configuration for Roo Code

{
  "mcpServers": {
    "gemini-image-mcp-server": {
      "command": "npx",
      "args": [
        "-y",
        "@creating-cat/gemini-image-mcp-server"
      ],
      "env": {
        "GEMINI_API_KEY": "YOUR_GEMINI_API_KEY"
      },
      "disabled": false,
      "timeout": 300
    }
  }
}
  • Replace YOUR_GEMINI_API_KEY with your actual Gemini API Key.

    • You can also use ${env:GEMINI_API_KEY} to retrieve the key from environment variables (Roo Code feature).

Tool: generate_image

This MCP server provides a tool named generate_image.

Input Parameters

Parameter Name Description Default Value
prompt (string, required) Text prompt for image generation. If input images are provided, include instructions on how to incorporate them into the generated image. English is recommended. None
output_directory (string, optional) Directory path where the generated image will be saved. output/images
file_name (string, optional) Name of the saved image file (without extension). generated_image
input_image_paths (string[], optional) List of file paths for input reference images. [] (empty array)
use_enhanced_prompt (boolean, optional) Whether to use enhanced prompts to assist AI instructions. true
target_image_max_size (number, optional) Maximum size (in pixels) for the longer edge after resizing. The aspect ratio is preserved. 512
force_conversion_type (string, optional) Optionally force conversion to a specific format ('jpeg', 'webp', 'png'). If not specified, the original format will be processed, defaulting to PNG for non-JPEG images. None
skip_compression_and_resizing (boolean, optional) Whether to skip compression and resizing of generated images. If true, force_conversion_type and target_image_max_size will be ignored. false
jpeg_quality (number, optional) JPEG quality (0-100). Lower values result in higher compression. 80
webp_quality (number, optional) WebP quality (0-100). Lower values result in higher compression. 80
png_compression_level (number, optional) PNG compression level (0-9). Higher values result in higher compression. 9
optipng_optimization_level (number, optional) OptiPNG optimization level (0-7). Higher values result in higher compression. 2

Output

On success, the server returns the save path of the generated image and a message detailing the process, including the original and compressed file sizes. Example:

{
  "content": [
    {
      "type": "text",
      "text": "Image successfully generated and compressed at output/images/my_cat.jpg.\nOriginal size: 1024.12KB, Final size: 150.45KB"
    }
  ]
}

If an error occurs, an error message will be returned.


Notes

  • The MIME type and aspect ratio of the generated images depend on the default settings of the Gemini API.
  • Handle your API key with care.
  • This server uses the model gemini-2.0-flash-preview-image-generation. Google may discontinue this model in the future.

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选