Gemini MCP Server
Integrates Google Gemini AI into Warp terminal workflows through three focused tools: single-turn chat for quick questions, multi-turn conversations with context preservation, and AI-powered code analysis with bug detection and optimization suggestions.
README
<div align="center">
<!-- Premium Warp Terminal Hero Banner --> <a href="https://app.warp.dev/referral/4YXPLX" target="_blank" rel="noopener noreferrer"> <img src="./assets/warp-banner.png" alt="Gemini MCP Server for Warp Terminal" width="100%" style="max-width: 1000px; border-radius: 12px;" /> </a>
<br/><br/>
🤖 Gemini MCP Server
Customized for Warp Terminal
Model Context Protocol Server for Google Gemini API
Optimized for Modern Terminal Workflows
<br/>
<!-- Premium Download CTA --> <a href="https://app.warp.dev/referral/4YXPLX" target="_blank" rel="noopener noreferrer"> <img alt="Download Warp Terminal" src="https://img.shields.io/badge/%E2%9A%A1_Download_Warp_Terminal-00E5FF?style=for-the-badge&logo=&logoColor=white" height="36" /> </a>
<p style="margin-top: 10px; font-size: 14px; color: #888;"> <strong>Get Warp Terminal at:</strong> <a href="https://app.warp.dev/referral/4YXPLX" target="_blank" rel="noopener noreferrer" style="color: #00E5FF; text-decoration: none; font-weight: bold;">warp.dev</a> ✨ </p>
<br/>
Seamlessly integrate Google Gemini AI into your Warp terminal workflow
Features • Installation • Configuration • Usage • API Reference • Contributing
</div>
📋 Overview
Gemini MCP Server is a Model Context Protocol implementation that brings Google Gemini's powerful AI capabilities directly into your Warp terminal. Built with enterprise-grade standards, this server enables conversational AI, multi-turn dialogues, and intelligent code analysis through simple, well-defined tools.
Why Use This?
✨ Zero Configuration - Works out of the box with Warp terminal
🔒 Secure by Default - API keys stored in environment variables
⚡ High Performance - Optimized for rapid response times
🎯 Purpose-Built Tools - Three focused tools for maximum utility
🌐 Open Source - MIT licensed, community-driven development
✨ Features
<table> <tr> <td width="33%">
💬 Single-Turn Chat
gemini_chat
Quick, stateless conversations with Gemini. Perfect for one-off questions, code generation, or content creation.
</td> <td width="33%">
🔄 Multi-Turn Conversations
gemini_chat_with_history
Maintain context across multiple exchanges. Build complex dialogues and iterative problem-solving sessions.
</td> <td width="33%">
🔍 Code Analysis
gemini_analyze_code
Deep code review, bug detection, optimization suggestions, and explanations. Supports multiple programming languages.
</td> </tr> </table>
🚀 Installation
Prerequisites
- Node.js ≥ 18.0.0
- npm ≥ 9.0.0
- Warp Terminal (latest version)
- Google Gemini API Key (Get one here)
Quick Start
# Clone or download the repository
git clone https://github.com/bobvasic/gemini-mcp-server.git
cd gemini-mcp-server
# Install dependencies
npm install
# Run automated setup (recommended)
./setup.sh YOUR_GEMINI_API_KEY
Manual Installation
# Install dependencies
npm install
# Make scripts executable
chmod +x index.js setup.sh
⚙️ Configuration
Method 1: Automated Setup (Recommended)
./setup.sh YOUR_GEMINI_API_KEY
This script automatically:
- Creates Warp MCP configuration
- Sets up your API key securely
- Validates the installation
Method 2: Manual Configuration
Step 1: Get Your API Key
- Visit Google AI Studio
- Sign in with your Google account
- Generate a new API key
- Copy the key (keep it secure!)
Step 2: Configure Warp
Create or edit ~/.config/warp/mcp.json:
{
"mcpServers": {
"gemini": {
"command": "node",
"args": ["${HOME}/gemini-mcp-server/index.js"],
"env": {
"GEMINI_API_KEY": "your-actual-api-key-here"
}
}
}
}
⚠️ Security Best Practice: Never commit your API key to version control. Use environment variables for production deployments.
Step 3: Restart Warp
Completely quit and restart Warp terminal for changes to take effect.
💡 Usage
Testing the Server
Verify your installation works:
export GEMINI_API_KEY="your-api-key"
cd gemini-mcp-server
npm start
You should see: Gemini MCP Server running on stdio
Tool Examples
1. Basic Conversation
{
"tool": "gemini_chat",
"arguments": {
"message": "Explain the difference between async/await and Promises in JavaScript",
"temperature": 0.7,
"max_tokens": 2048
}
}
Use Cases:
- Quick questions and answers
- Code generation
- Content writing
- Brainstorming ideas
2. Contextual Dialogue
{
"tool": "gemini_chat_with_history",
"arguments": {
"messages": [
{
"role": "user",
"parts": [{"text": "What is dependency injection?"}]
},
{
"role": "model",
"parts": [{"text": "Dependency injection is a design pattern..."}]
},
{
"role": "user",
"parts": [{"text": "Show me an example in TypeScript"}]
}
],
"temperature": 0.8
}
}
Use Cases:
- Technical tutorials
- Iterative problem-solving
- Learning sessions
- Complex debugging
3. Code Analysis
{
"tool": "gemini_analyze_code",
"arguments": {
"code": "function processUser(data) {\n return data.name.toUpperCase();\n}",
"language": "javascript",
"analysis_type": "bugs"
}
}
Analysis Types:
bugs- Find errors and potential issuesoptimize- Performance and best practicesexplain- Detailed code explanationreview- Comprehensive assessment
📚 API Reference
Tool: gemini_chat
Description: Single-turn conversation with Gemini
Parameters:
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
message |
string | Yes | - | Your prompt or question |
temperature |
number | No | 1.0 | Creativity (0.0-2.0) |
max_tokens |
number | No | 8192 | Maximum response length |
Example Response:
{
"content": [
{
"type": "text",
"text": "Here's a detailed explanation..."
}
]
}
Tool: gemini_chat_with_history
Description: Multi-turn conversation with context preservation
Parameters:
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
messages |
array | Yes | - | Conversation history |
temperature |
number | No | 1.0 | Creativity (0.0-2.0) |
Message Format:
{
role: "user" | "model",
parts: [{ text: string }]
}
Tool: gemini_analyze_code
Description: AI-powered code analysis and review
Parameters:
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
code |
string | Yes | - | Code to analyze |
language |
string | No | - | Programming language |
analysis_type |
enum | No | review | bugs, optimize, explain, review |
Supported Languages: JavaScript, TypeScript, Python, Go, Rust, Java, C++, Ruby, PHP, Swift, Kotlin, and more
🔧 Advanced Configuration
Environment Variables
# Required
export GEMINI_API_KEY="your-api-key"
# Optional (for custom deployments)
export MCP_SERVER_PORT="3000" # If running as HTTP server
export LOG_LEVEL="info" # debug, info, warn, error
Model Selection
To use different Gemini models, edit index.js:
const model = genAI.getGenerativeModel({
model: "gemini-2.5-pro", // or "gemini-2.0-flash-exp"
generationConfig: {
temperature: 1.0,
maxOutputTokens: 8192,
},
});
Available Models:
gemini-2.0-flash-exp- Fast, efficient (default)gemini-2.5-pro- Most capable (when available)gemini-pro- Balanced performance
🐛 Troubleshooting
Common Issues
<details> <summary><b>Error: "GEMINI_API_KEY environment variable is required"</b></summary>
Solution:
export GEMINI_API_KEY="your-key"
# Or add to ~/.bashrc or ~/.zshrc for persistence
echo 'export GEMINI_API_KEY="your-key"' >> ~/.bashrc
</details>
<details> <summary><b>Warp doesn't recognize the MCP server</b></summary>
Checklist:
- Verify
~/.config/warp/mcp.jsonexists and is valid JSON - Ensure paths in config use absolute paths or
${HOME} - Completely quit and restart Warp (not just close window)
- Check Warp logs:
Settings → Advanced → View Logs</details>
<details> <summary><b>API calls fail with 403 or 401 errors</b></summary>
Possible causes:
- Invalid API key
- API key not activated
- Billing not enabled on Google Cloud
- Rate limits exceeded
Solution: Verify your API key at Google AI Studio </details>
<details> <summary><b>Server starts but responses are empty</b></summary>
Debug steps:
export GEMINI_API_KEY="your-key"
node index.js 2>&1 | tee debug.log
# Then check debug.log for errors
</details>
🔒 Security
Best Practices
- Never commit API keys - Use environment variables
- Rotate keys regularly - Generate new keys every 90 days
- Use key restrictions - Limit keys to specific APIs in Google Cloud Console
- Monitor usage - Check Google Cloud Console for unexpected activity
- Audit logs - Review MCP server logs periodically
Reporting Security Issues
Please report security vulnerabilities to info@cyberlinksec.com. Do not create public issues for security concerns.
See SECURITY.md for our full security policy.
🤝 Contributing
We welcome contributions! Here's how you can help:
Development Setup
# Clone the repo
git clone https://github.com/bobvasic/gemini-mcp-server.git
cd gemini-mcp-server
# Install dependencies
npm install
# Run in development mode
export GEMINI_API_KEY="your-key"
npm start
Contribution Guidelines
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
Code Standards
- Follow existing code style
- Add tests for new features
- Update documentation
- Ensure no hardcoded credentials
- Use meaningful commit messages
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
MIT License - Copyright (c) 2025 Gemini MCP Server Contributors
🙏 Acknowledgments
- Model Context Protocol - MCP specification
- Google AI - Gemini API
- Warp Terminal - Modern terminal platform
- All contributors who helped build this project
📊 Stats & Metrics
- Response Time: < 2s average
- Uptime: 99.9% (dependent on Google API)
- Models Supported: 3+ Gemini variants
- Languages: JavaScript/TypeScript
- MCP Version: 1.0.4
🗺️ Roadmap
- [ ] Add streaming response support
- [ ] Implement token usage tracking
- [ ] Add conversation history persistence
- [ ] Support for image inputs
- [ ] Multi-language documentation
- [ ] Docker container support
- [ ] Health check endpoints
- [ ] Prometheus metrics export
<div align="center">
Built with ❤️ for the developer community
If this project helped you, please ⭐ star the repository!
Documentation • Issues • Discussions
</div>
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。