Gemini MCP Server

Gemini MCP Server

A Model Context Protocol server that enables Claude to collaborate with Google's Gemini AI models, providing tools for question answering, code review, brainstorming, test generation, and explanations.

Category
访问服务器

README

Gemini MCP Server

A Model Context Protocol (MCP) server that enables Claude to collaborate with Google's Gemini AI models.

Features

  • 🤖 Multiple Gemini Tools: Ask questions, review code, brainstorm ideas, generate tests, and get explanations
  • 🔄 Dual-Model Support: Automatic fallback from experimental to stable models
  • Configurable Models: Easy switching between different Gemini variants
  • 🛡️ Reliable: Never lose functionality with automatic model fallback
  • 📊 Transparent: Shows which model was used for each response

Quick Start

1. Prerequisites

2. Installation

# Clone the repository
git clone https://github.com/lbds137/gemini-mcp-server.git
cd gemini-mcp-server

# Install dependencies
pip install -r requirements.txt

# Copy and configure environment
cp .env.example .env
# Edit .env and add your GEMINI_API_KEY

3. Configuration

Edit .env to configure your models:

# Your Gemini API key (required)
GEMINI_API_KEY=your_api_key_here

# Model configuration (optional - defaults shown)
GEMINI_MODEL_PRIMARY=gemini-2.5-pro-preview-06-05
GEMINI_MODEL_FALLBACK=gemini-1.5-pro
GEMINI_MODEL_TIMEOUT=10000

4. Development Setup

For development with PyCharm or other IDEs:

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install in development mode
pip install -e .

# Run tests
python -m pytest

5. Register with Claude

# Install to MCP location
./scripts/install.sh

# Or manually register
claude mcp add gemini-collab python3 ~/.claude-mcp-servers/gemini-collab/server.py

Available Tools

ask_gemini

General questions and problem-solving assistance.

gemini_code_review

Get code review feedback focusing on security, performance, and best practices.

gemini_brainstorm

Collaborative brainstorming for architecture and design decisions.

gemini_test_cases

Generate comprehensive test scenarios for your code.

gemini_explain

Get clear explanations of complex code or concepts.

server_info

Check server status and model configuration.

Model Configurations

Best Quality (Default)

GEMINI_MODEL_PRIMARY=gemini-2.5-pro-preview-06-05
GEMINI_MODEL_FALLBACK=gemini-1.5-pro

Best Performance

GEMINI_MODEL_PRIMARY=gemini-2.5-flash-preview-05-20
GEMINI_MODEL_FALLBACK=gemini-2.0-flash

Most Cost-Effective

GEMINI_MODEL_PRIMARY=gemini-2.0-flash
GEMINI_MODEL_FALLBACK=gemini-2.0-flash-lite

Development

Project Structure

gemini-mcp-server/
├── src/
│   └── gemini_mcp/
│       ├── __init__.py
│       └── server.py      # Main server with DualModelManager
├── tests/
│   └── test_server.py
├── scripts/
│   ├── install.sh       # Quick installation script
│   ├── update.sh        # Update deployment script
│   └── dev-link.sh      # Development symlink script
├── docs/
│   └── BUILD_YOUR_OWN_MCP_SERVER.md
├── .claude/
│   └── settings.json    # Claude Code permissions
├── .env                 # Your configuration (git-ignored)
├── .env.example         # Example configuration
├── .gitignore
├── CLAUDE.md           # Instructions for Claude Code
├── LICENSE
├── README.md           # This file
├── docs/
│   ├── BUILD_YOUR_OWN_MCP_SERVER.md
│   ├── DUAL_MODEL_CONFIGURATION.md # Dual-model setup guide
│   ├── PYCHARM_SETUP.md
│   └── TESTING.md
├── requirements.txt
├── setup.py
├── package.json        # MCP registration metadata
└── package-lock.json

Running Tests

python -m pytest tests/ -v

Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

Updating

To update your local MCP installation after making changes:

./scripts/update.sh

This will copy the latest version to your MCP servers directory.

Troubleshooting

Server not found

# Check registration
claude mcp list

# Re-register if needed
./scripts/install.sh

API Key Issues

# Verify environment variable
echo $GEMINI_API_KEY

# Test directly
python -c "import google.generativeai as genai; genai.configure(api_key='$GEMINI_API_KEY'); print('✅ API key works')"

Model Availability

Some models may not be available in all regions. Check the fallback model in logs if primary fails consistently.

License

MIT License - see LICENSE file for details.

Acknowledgments

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选