Gemini MCP Server
A Model Context Protocol server that enables Claude to collaborate with Google's Gemini AI models, providing tools for question answering, code review, brainstorming, test generation, and explanations.
README
Gemini MCP Server
A Model Context Protocol (MCP) server that enables Claude to collaborate with Google's Gemini AI models.
Features
- 🤖 Multiple Gemini Tools: Ask questions, review code, brainstorm ideas, generate tests, and get explanations
- 🔄 Dual-Model Support: Automatic fallback from experimental to stable models
- ⚡ Configurable Models: Easy switching between different Gemini variants
- 🛡️ Reliable: Never lose functionality with automatic model fallback
- 📊 Transparent: Shows which model was used for each response
Quick Start
1. Prerequisites
- Python 3.8+
- Claude Desktop
- Google AI API Key
2. Installation
# Clone the repository
git clone https://github.com/lbds137/gemini-mcp-server.git
cd gemini-mcp-server
# Install dependencies
pip install -r requirements.txt
# Copy and configure environment
cp .env.example .env
# Edit .env and add your GEMINI_API_KEY
3. Configuration
Edit .env to configure your models:
# Your Gemini API key (required)
GEMINI_API_KEY=your_api_key_here
# Model configuration (optional - defaults shown)
GEMINI_MODEL_PRIMARY=gemini-2.5-pro-preview-06-05
GEMINI_MODEL_FALLBACK=gemini-1.5-pro
GEMINI_MODEL_TIMEOUT=10000
4. Development Setup
For development with PyCharm or other IDEs:
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install in development mode
pip install -e .
# Run tests
python -m pytest
5. Register with Claude
# Install to MCP location
./scripts/install.sh
# Or manually register
claude mcp add gemini-collab python3 ~/.claude-mcp-servers/gemini-collab/server.py
Available Tools
ask_gemini
General questions and problem-solving assistance.
gemini_code_review
Get code review feedback focusing on security, performance, and best practices.
gemini_brainstorm
Collaborative brainstorming for architecture and design decisions.
gemini_test_cases
Generate comprehensive test scenarios for your code.
gemini_explain
Get clear explanations of complex code or concepts.
server_info
Check server status and model configuration.
Model Configurations
Best Quality (Default)
GEMINI_MODEL_PRIMARY=gemini-2.5-pro-preview-06-05
GEMINI_MODEL_FALLBACK=gemini-1.5-pro
Best Performance
GEMINI_MODEL_PRIMARY=gemini-2.5-flash-preview-05-20
GEMINI_MODEL_FALLBACK=gemini-2.0-flash
Most Cost-Effective
GEMINI_MODEL_PRIMARY=gemini-2.0-flash
GEMINI_MODEL_FALLBACK=gemini-2.0-flash-lite
Development
Project Structure
gemini-mcp-server/
├── src/
│ └── gemini_mcp/
│ ├── __init__.py
│ └── server.py # Main server with DualModelManager
├── tests/
│ └── test_server.py
├── scripts/
│ ├── install.sh # Quick installation script
│ ├── update.sh # Update deployment script
│ └── dev-link.sh # Development symlink script
├── docs/
│ └── BUILD_YOUR_OWN_MCP_SERVER.md
├── .claude/
│ └── settings.json # Claude Code permissions
├── .env # Your configuration (git-ignored)
├── .env.example # Example configuration
├── .gitignore
├── CLAUDE.md # Instructions for Claude Code
├── LICENSE
├── README.md # This file
├── docs/
│ ├── BUILD_YOUR_OWN_MCP_SERVER.md
│ ├── DUAL_MODEL_CONFIGURATION.md # Dual-model setup guide
│ ├── PYCHARM_SETUP.md
│ └── TESTING.md
├── requirements.txt
├── setup.py
├── package.json # MCP registration metadata
└── package-lock.json
Running Tests
python -m pytest tests/ -v
Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
Updating
To update your local MCP installation after making changes:
./scripts/update.sh
This will copy the latest version to your MCP servers directory.
Troubleshooting
Server not found
# Check registration
claude mcp list
# Re-register if needed
./scripts/install.sh
API Key Issues
# Verify environment variable
echo $GEMINI_API_KEY
# Test directly
python -c "import google.generativeai as genai; genai.configure(api_key='$GEMINI_API_KEY'); print('✅ API key works')"
Model Availability
Some models may not be available in all regions. Check the fallback model in logs if primary fails consistently.
License
MIT License - see LICENSE file for details.
Acknowledgments
- Built for Claude using the Model Context Protocol
- Powered by Google's Gemini AI
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。