genome-mcp
Intelligent Genomic Data Server Provides high-quality gene information queries, homologous gene analysis, and evolutionary research functions via the MCP protocol.
README
Genome MCP
🧬 智能基因组数据服务器 - 通过MCP协议提供高质量的基因信息查询、同源基因分析和进化研究功能。可在 Glama MCP平台 发现和快速配置。
1. 🚀 核心特性
- 🧬 基因信息查询: 基于NCBI Gene数据库的准确基因信息
- 🔄 同源基因分析: 基于Ensembl API的跨物种同源基因查询(253+ TP53同源基因)
- 🧬 进化分析: 系统发育关系构建和保守性分析
- 🔍 语义搜索: 理解查询意图的智能搜索功能
- 📊 批量处理: 优化的并发查询,支持大规模数据分析
- 🌐 多传输模式: 支持STDIO、HTTP、SSE传输协议
- ⚡ 异步架构: 高性能异步处理架构
- 🔬 科学可靠: 基于权威数据库,无模拟数据,完全科学可信
2. 安装
推荐使用现代化的 uv 包管理器以获得更快的安装速度:
# 使用uvx直接运行(推荐)
uvx genome-mcp
# 或添加到项目
uv add genome-mcp
传统方式安装:
pip install genome-mcp
3. 🛠️ MCP 接入配置
3.1 Claude Desktop
编辑配置文件:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json
推荐使用 uvx 运行:
{
"mcpServers": {
"genome-mcp": {
"command": "uvx",
"args": ["genome-mcp"],
"env": {}
}
}
}
或使用传统方式:
{
"mcpServers": {
"genome-mcp": {
"command": "python",
"args": ["-m", "genome_mcp"],
"env": {}
}
}
}
或使用 uv run:
{
"mcpServers": {
"genome-mcp": {
"command": "uv",
"args": ["run", "-m", "genome_mcp"],
"env": {}
}
}
}
3.2 Continue.dev
在 VS Code 的 Continue.dev 扩展配置中:
{
"mcpServers": {
"genome-mcp": {
"command": "uvx",
"args": ["genome-mcp"]
}
}
}
3.3 Cursor (VS Code 扩展)
在 Cursor 设置中添加:
{
"mcpServers": {
"genome-mcp": {
"command": "uvx",
"args": ["genome-mcp"],
"env": {
"GENOME_MCP_LOG_LEVEL": "info"
}
}
}
}
3.4 Cline (Claude for VS Code)
在 Cline 设置文件中:
{
"mcpServers": {
"genome-mcp": {
"command": "uvx",
"args": ["genome-mcp"],
"timeout": 30000
}
}
}
3.5 其他支持 MCP 的客户端
- Windsurf: 使用与 Claude Desktop 相同的配置格式
- OpenHands: 在 config.json 中添加服务器配置
- Custom MCP Client: 参考下面的 Python 示例
3.6 自定义 MCP 客户端
使用 stdio 传输:
import subprocess
import json
# 启动 MCP 服务器
process = subprocess.Popen(
["python", "-m", "genome_mcp"],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
text=True
)
# 发送初始化消息
init_message = {
"jsonrpc": "2.0",
"id": 1,
"method": "initialize",
"params": {
"protocolVersion": "2024-11-05",
"capabilities": {},
"clientInfo": {"name": "test-client", "version": "1.0.0"}
}
}
process.stdin.write(json.dumps(init_message) + "\n")
response = process.stdout.readline()
print("Server response:", response)
4. 🔧 API 功能
4.1 可用工具
-
get_data - 智能数据获取
- 支持基因符号、ID、区域搜索、同源基因查询
- 自动类型识别和查询优化
- 批量查询支持
-
advanced_query - 高级批量查询
- 复杂查询条件组合
- 批量处理优化
- 自定义输出格式
-
smart_search - 语义搜索
- 自然语言查询理解
- 智能结果排序
- 上下文感知搜索
-
kegg_pathway_enrichment_tool - KEGG通路富集分析 🆕
- 基因列表在KEGG通路中的富集分析
- 超几何分布检验计算统计显著性
- FDR多重检验校正
- 支持人类、小鼠、大鼠等多种模式生物
4.2 使用示例
import asyncio
from genome_mcp import get_data, advanced_query, smart_search
async def main():
# 获取基因信息
gene_info = await get_data("TP53")
print("Gene info:", gene_info)
# 区域搜索
region_data = await get_data("chr17:7565097-7590856", query_type="region")
print("Region data:", region_data)
# 批量查询
batch_results = await get_data(["TP53", "BRCA1", "EGFR"], query_type="gene")
print("Batch results:", batch_results)
# 语义搜索
search_results = await smart_search("tumor suppressor genes involved in cancer")
print("Search results:", search_results)
# 高级查询
advanced_results = await advanced_query(
query="cancer genes",
query_type="search",
database="gene",
max_results=20
)
print("Advanced results:", advanced_results)
# KEGG通路富集分析
kegg_results = await kegg_pathway_enrichment_tool(
gene_list=["7157", "672", "675"], # TP53, BRCA1, BRCA2的Entrez ID
organism="hsa",
pvalue_threshold=0.05,
min_gene_count=2
)
print("KEGG enrichment results:", kegg_results)
asyncio.run(main())
5. 📋 响应格式
所有API响应都遵循统一的JSON格式,包含 success、data 和 query_info 字段。
示例响应:
{
"success": true,
"data": {
"gene_info": {
"uid": "7157",
"name": "TP53",
"description": "tumor protein p53"
}
},
"query_info": {
"query": "TP53",
"query_type": "gene"
}
}
6. 💻 命令行使用
# 直接运行(推荐)
uvx genome-mcp
# 开发模式运行
uv run -m genome_mcp
# HTTP 服务器模式
uv run -m genome_mcp --port 8080
# 查看帮助
uv run -m genome_mcp --help
7. 📋 更新日志
详细的版本更新记录请查看 CHANGELOG.md
8. 📚 依赖
详细的依赖信息和版本要求请查看 pyproject.toml
Python 版本要求:>= 3.11
9. 🏗️ 开发
git clone https://github.com/gqy20/genome-mcp
cd genome-mcp
pip install -e ".[dev]"
make test
make lint
9.1 开发命令
make install # 安装开发依赖
make format # 格式化代码
make lint # 代码质量检查
make test # 运行测试
make check # 完整检查
make build # 构建包
10. 📄 许可证
本项目采用 MIT License 开源许可证。
© 2025 gqy20
11. 🤝 贡献
欢迎提交 Issue 和 Pull Request!
12. 📞 支持
- 📖 文档
- 🧬 Glama MCP服务器
- 🐛 问题反馈
- 💬 讨论
Genome MCP - 让基因组数据访问更简单、更智能!
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。