GenZ MCP Server
A streamlined MCP server that provides essential AI-powered tools for interactive development chat and systematic root cause analysis. It supports multiple AI providers to help developers brainstorm technical solutions and perform evidence-based debugging.
README
GenZ MCP Server: Streamlined AI Development Assistant
<div align="center"> <b>🤖 <a href="https://www.anthropic.com/claude-code">Claude Code</a> + [Gemini / OpenAI / Grok / OpenRouter / DIAL / Ollama / Any Model] = Focused AI Development Tools</b> </div>
<br/>
A streamlined Model Context Protocol (MCP) server providing essential AI-powered development tools for your favorite coding agent. GenZ MCP Server focuses on the core functionality you need most: intelligent chat and comprehensive debugging assistance.
What is GenZ MCP Server?
GenZ MCP Server is a slimmed-down version of the comprehensive Zen MCP Server, containing only the two most essential tools:
- GenZ Chat (
genz_chat) - Interactive development chat and collaborative thinking - GenZ Debug (
genz_debug) - Systematic root cause analysis and debugging assistance
This focused approach provides:
- ✅ Faster startup and reduced complexity
- ✅ Essential AI-powered development assistance
- ✅ Full multi-model provider support
- ✅ Conversation threading and context preservation
- ✅ Clean, maintainable codebase
Attribution
GenZ MCP Server is a derivative work of the excellent Zen MCP Server by BeehiveInnovations, with much love and gratitude for their original concepts and innovative ideas. The foundational architecture, multi-provider support, and conversation threading were all pioneered in the original Zen MCP Server.
This fork was created to explore a more focused approach, removing tools that weren't being used in my personal workflow and concentrating on the essential chat and debugging functionality. The original Zen MCP Server remains the comprehensive solution for teams needing the full suite of AI-powered development tools.
Tools Overview
1. GenZ Chat (genz_chat)
Interactive development chat and collaborative thinking
Perfect for:
- Bouncing ideas during analysis
- Getting second opinions on technical decisions
- Collaborative brainstorming sessions
- Validating approaches and checklists
- General development questions and explanations
- Exploring alternatives and solutions
Features:
- File context support for code discussions
- Image support for UI/visual discussions
- Conversation continuation across sessions
- Web search integration for current information
- Multiple AI model support for diverse perspectives
2. GenZ Debug (genz_debug)
Systematic root cause analysis and debugging assistance
Perfect for:
- Complex bug investigation
- Mysterious errors and failures
- Performance issues analysis
- Race conditions and timing problems
- Memory leaks and resource issues
- Integration and configuration problems
Features:
- Step-by-step investigation workflow
- Evidence-based hypothesis tracking
- Confidence levels (exploring → certain)
- Systematic file examination
- Context-aware analysis
- Expert model validation
- Backtracking support for complex investigations
Quick Start
Prerequisites
- Python 3.9+
- An API key for at least one supported provider:
- Gemini API key (
GEMINI_API_KEY) - OpenAI API key (
OPENAI_API_KEY) - OpenRouter API key (
OPENROUTER_API_KEY) - Local Ollama setup (
CUSTOM_API_URL) - Or other supported providers
- Gemini API key (
Installation
-
Clone the repository:
git clone https://github.com/your-repo/genz-mcp-server cd genz-mcp-server -
Set up your environment:
# Create and activate virtual environment python -m venv .genz_venv source .genz_venv/bin/activate # On Windows: .genz_venv\Scripts\activate # Install dependencies pip install -r requirements.txt -
Configure API keys:
# Copy example and edit cp .env.example .env # Edit .env with your API keys -
Add to Claude Desktop config:
{ "mcpServers": { "genz-mcp-server": { "command": "python", "args": ["/path/to/genz-mcp-server/server.py"], "env": { "GEMINI_API_KEY": "your_key_here", "OPENAI_API_KEY": "your_key_here" } } } }
Usage Examples
GenZ Chat Examples
Basic Development Discussion:
Use genz_chat to discuss the best approach for implementing user authentication
in a Flask application. Include security considerations and modern best practices.
Code Review Discussion:
Use genz_chat with files: /path/to/auth.py /path/to/models.py
I want to discuss potential security vulnerabilities in this authentication system
and get suggestions for improvements.
GenZ Debug Examples
Systematic Bug Investigation:
Use genz_debug to investigate why user sessions are randomly expiring in production.
The issue seems intermittent and affects about 5% of users.
Step 1: Describe the issue and form initial investigation plan
Step 2: Examine session handling code and configuration
Step 3: Investigate potential race conditions or timing issues
Performance Issue Analysis:
Use genz_debug to analyze slow database queries in the user dashboard.
Load times have increased from 200ms to 3+ seconds over the past week.
Model Support
GenZ MCP Server supports all the same AI providers as the full Zen MCP Server:
- Gemini (Google AI)
- OpenAI (GPT models)
- Grok (X.AI)
- OpenRouter (Multiple models)
- DIAL (Enterprise)
- Custom APIs (Ollama, vLLM, etc.)
Model Selection
- Set
DEFAULT_MODEL=autofor automatic model selection - Or specify models explicitly:
DEFAULT_MODEL=gemini-2.0-flash-exp - Override per-request:
model: gpt-4o-miniin tool calls
Development
Running Tests
# Unit tests
python -m pytest tests/ -v
# Integration tests (requires API keys)
python -m pytest tests/ -v -m integration
# Code quality checks
./code_quality_checks.sh
Project Structure
genz-mcp-server/
├── server.py # Main MCP server
├── config.py # Configuration settings
├── tools/
│ ├── genz_chat.py # Chat tool implementation
│ └── genz_debug.py # Debug tool implementation
├── systemprompts/ # AI prompts for tools
├── providers/ # AI model providers
├── utils/ # Utility modules
└── tests/ # Test suite
Migration from Zen MCP Server
If you're coming from the full Zen MCP Server, GenZ provides the essential tools you use most:
Removed tools: analyze, codereview, consensus, planner, refactor, testgen, thinkdeep, tracer, precommit, secaudit, docgen, challenge, listmodels, version
Kept tools: chat → genz_chat, debug → genz_debug
Your existing workflows using chat and debug will continue to work with the new tool names.
Contributing
- Fork the repository
- Create a feature branch
- Make changes with tests
- Run quality checks:
./code_quality_checks.sh - Submit a pull request
License
MIT License - see LICENSE file for details.
Support
For issues, questions, or feature requests:
- Create an issue in the repository
- Check existing documentation
- Review the original Zen MCP Server docs for advanced concepts
GenZ MCP Server: Essential AI tools, maximum focus. 🚀
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。