
GeoServer MCP Server
A Model Context Protocol server that connects Large Language Models to the GeoServer REST API, enabling AI assistants to query and manipulate geospatial data through natural language.
Tools
create_layer
Create a new layer in GeoServer. Args: workspace: The workspace for the new layer layer: The name of the layer to create data_store: The data store to use source: The source data (file, table name, etc.) Returns: Dict with status and layer information
delete_resource
Delete a resource from GeoServer. Args: resource_type: Type of resource to delete (workspace, layer, style, etc.) workspace: The workspace containing the resource name: The name of the resource Returns: Dict with status and result information
query_features
Query features from a vector layer using CQL filter. Args: workspace: The workspace containing the layer layer: The layer to query filter: Optional CQL filter expression properties: Optional list of properties to return max_features: Maximum number of features to return Returns: GeoJSON FeatureCollection with query results
generate_map
Generate a map image using WMS GetMap. Args: layers: List of layers to include (format: workspace:layer) styles: Optional styles to apply (one per layer) bbox: Bounding box [minx, miny, maxx, maxy] width: Image width in pixels height: Image height in pixels format: Image format (png, jpeg, etc.) Returns: Dict with map information and URL
create_style
Create a new SLD style in GeoServer. Args: name: Name for the style sld: SLD XML content workspace: Optional workspace for the style Returns: Dict with status and style information
list_workspaces
List available workspaces in GeoServer.
create_workspace
Create a new workspace in GeoServer. Args: workspace: Name of the workspace to create Returns: Dict with status and result information
get_layer_info
Get detailed information about a layer. Args: workspace: The workspace containing the layer layer: The name of the layer Returns: Dict with layer metadata
list_layers
List layers in GeoServer, optionally filtered by workspace. Args: workspace: Optional workspace to filter layers Returns: List of layer information dictionaries
README
GeoServer MCP Server
<a href="https://badge.mcpx.dev?type=server 'MCP Server'"> <img src="https://badge.mcpx.dev?type=server" title="MCP Server"/> </a> <p align="center"> A Model Context Protocol (MCP) server implementation that connects Large Language Models (LLMs) to the GeoServer REST API, enabling AI assistants to interact with geospatial data and services. </p>
<div align="center"> <img src="docs/images/geoserver-mcp.png" alt="GeoServer MCP Server Logo" width="400"/> </div>
🏆 Badges & Indexes
<div align="center"> <a href="https://glama.ai/mcp/servers/@mahdin75/geoserver-mcp"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@mahdin75/geoserver-mcp/badge" alt="GeoServer Server MCP server" /> </a> <br/><br/><br/> <a href="https://mcp.so/server/Geoserver%20MCP%20Server/mahdin75"> <img src="https://mcp.so/logo.png" alt="MCP.so Badge" width="150"/> </a> </div>
📋 Table of Contents
- Features
- Prerequisites
- Installation
- Configuration
- Available Tools
- Example Usage
- Planned Features
- Contributing
- License
- Related Projects
- Support
🚀 Features
- 🔍 Query and manipulate GeoServer workspaces, layers, and styles
- 🗺️ Execute spatial queries on vector data
- 🎨 Generate map visualizations
- 🌐 Access OGC-compliant web services (WMS, WFS)
- 🔄 Real-time interaction with GeoServer REST API
- 📊 Support for complex spatial operations
- 🛠️ Easy integration with MCP-compatible clients
📋 Prerequisites
- Python 3.10 or higher
- Running GeoServer instance with REST API enabled
- MCP-compatible client (like Claude Desktop or Cursor)
geoserver-rest
package- Internet connection for package installation
🛠️ Installation
- Clone the repository:
git clone https://github.com/mahdin75/geoserver-mcp.git
cd geoserver-mcp
- Install the package:
pip install -e .
- Configure GeoServer connection:
Linux/Mac:
export GEOSERVER_URL="http://localhost:8080/geoserver"
export GEOSERVER_USER="admin"
export GEOSERVER_PASSWORD="geoserver"
Windows PowerShell:
$env:GEOSERVER_URL="http://localhost:8080/geoserver"
$env:GEOSERVER_USER="admin"
$env:GEOSERVER_PASSWORD="geoserver"
- Start the server:
geoserver-mcp-server
🔧 Configuration
Command-line Arguments
geoserver-mcp-server --url http://localhost:8080/geoserver --user admin --password geoserver --debug
Environment Variables
Variable | Description | Default |
---|---|---|
GEOSERVER_URL | GeoServer instance URL | http://localhost:8080/geoserver |
GEOSERVER_USER | Admin username | admin |
GEOSERVER_PASSWORD | Admin password | geoserver |
MCP Client Integration
Claude Desktop
Edit claude_desktop_config.json
:
{
"mcpServers": {
"geoserver-mcp-server": {
"command": "geoserver-mcp-server",
"args": [
"--url",
"http://localhost:8080/geoserver",
"--user",
"admin",
"--password",
"geoserver"
]
}
}
}
Cursor
Create .cursor/mcp.json
:
{
"mcpServers": {
"geoserver-mcp-server": {
"command": "geoserver-mcp-server",
"args": [
"--url",
"http://localhost:8080/geoserver",
"--user",
"admin",
"--password",
"geoserver"
]
}
}
}
🛠️ Available Tools
Catalog Management
Tool | Description |
---|---|
list_workspaces |
Get available workspaces |
create_workspace |
Create a new workspace |
get_layer_info |
Get detailed layer metadata |
list_layers |
List layers in a workspace |
create_layer |
Create a new layer |
delete_resource |
Remove resources |
Data Operations
Tool | Description |
---|---|
query_features |
Execute CQL queries on vector data |
update_features |
Modify feature attributes |
delete_features |
Remove features based on criteria |
Visualization
Tool | Description |
---|---|
generate_map |
Create styled map images |
create_style |
Define new SLD styles |
apply_style |
Apply existing styles to layers |
📚 Example Usage
List Workspaces
Tool: list_workspaces
Parameters: {}
Response: ["default", "demo", "topp", "tiger", "sf"]
Get Layer Information
Tool: get_layer_info
Parameters: {
"workspace": "topp",
"layer": "states"
}
Query Features
Tool: query_features
Parameters: {
"workspace": "topp",
"layer": "states",
"filter": "PERSONS > 10000000",
"properties": ["STATE_NAME", "PERSONS"]
}
Generate Map
Tool: generate_map
Parameters: {
"layers": ["topp:states"],
"styles": ["population"],
"bbox": [-124.73, 24.96, -66.97, 49.37],
"width": 800,
"height": 600,
"format": "png"
}
🔮 Planned Features
- [ ] Coverage and raster data management
- [ ] Security and access control
- [ ] Advanced styling capabilities
- [ ] WPS processing operations
- [ ] GeoWebCache integration
- [ ] Batch operations support
- [ ] Performance optimizations
- [ ] Extended query capabilities
🤝 Contributing
We welcome contributions! Here's how you can help:
- Fork the repository
- Create a feature branch (
git checkout -b feature/AmazingFeature
) - Commit your changes (
git commit -m 'Add some AmazingFeature'
) - Push to the branch (
git push origin feature/AmazingFeature
) - Open a Pull Request
Please ensure your PR description clearly describes the problem and solution. Include the relevant issue number if applicable.
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🔗 Related Projects
- Model Context Protocol - The core MCP implementation
- GeoServer REST API - Official GeoServer REST documentation
- GeoServer REST Python Client - Python client for GeoServer REST API
📞 Support
For support, please Open an issue
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。