Gerrit Review MCP Server

Gerrit Review MCP Server

Provides integration with Gerrit code review system, allowing AI assistants to fetch change details and compare patchset differences for code reviews.

Category
访问服务器

README

Gerrit Review MCP Server

This MCP server provides integration with Gerrit code review system, allowing AI assistants to review code changes and their details through a simple interface.

Features

The server provides a streamlined toolset for code review:

Fetch Change Details

fetch_gerrit_change(change_id: str, patchset_number: Optional[str] = None)
  • Fetches complete change information including files and patch sets
  • Shows detailed diff information for each modified file
  • Displays file changes, insertions, and deletions
  • Supports reviewing specific patch sets
  • Returns comprehensive change details including:
    • Project and branch information
    • Author and reviewer details
    • Comments and review history
    • File modifications with diff content
    • Current patch set information

Compare Patchset Differences

fetch_patchset_diff(change_id: str, base_patchset: str, target_patchset: str, file_path: Optional[str] = None)
  • Compare differences between two patchsets of a change
  • View specific file differences or all changed files
  • Analyze code modifications across patchset versions
  • Track evolution of changes through review iterations

Example Usage

Review a complete change:

# Fetch latest patchset of change 23824
change = fetch_gerrit_change("23824")

Compare specific patchsets:

# Compare differences between patchsets 1 and 2 for change 23824
diff = fetch_patchset_diff("23824", "1", "2")

View specific file changes:

# Get diff for a specific file between patchsets
file_diff = fetch_patchset_diff("23824", "1", "2", "path/to/file.swift")

Prerequisites

  • Python 3.10 or higher (Python 3.11 recommended)
  • Gerrit HTTP access credentials
  • HTTP password generated from Gerrit settings
  • Access to the mcp[cli] package repository (private package)

Installation

  1. Clone this repository:
git clone <repository-url>
cd gerrit-review-mcp
  1. Create and activate a virtual environment:
# For macOS/Linux:
python -m venv .venv
source .venv/bin/activate

# For Windows:
python -m venv .venv
.venv\Scripts\activate
  1. Install this package in editable mode with its dependencies:
pip install -e .

Configuration

  1. Set up environment variables:
export GERRIT_HOST="gerrit.example.com"  # Your Gerrit server hostname
export GERRIT_USER="your-username"       # Your Gerrit username
export GERRIT_HTTP_PASSWORD="your-http-password"  # Your Gerrit HTTP password

Or create a .env file:

GERRIT_HOST=gerrit.example.com
GERRIT_USER=your-username
GERRIT_HTTP_PASSWORD=your-http-password
  1. Generate HTTP password:
  • Log into your Gerrit web interface
  • Go to Settings > HTTP Credentials
  • Generate new password
  • Copy the password to your environment or .env file

MCP Configuration

To use this MCP server with Cursor, you need to add its configuration to your ~/.cursor/mcp.json file. Here's the required configuration:

{
  "mcpServers": {
    "gerrit-review-mcp": {
      "command": "/path/to/your/workspace/gerrit-code-review-mcp/.venv/bin/python",
      "args": [
        "/path/to/your/workspace/gerrit-code-review-mcp/server.py",
        "--transport",
        "stdio"
      ],
      "cwd": "/path/to/your/workspace/gerrit-code-review-mcp",
      "env": {
        "PYTHONPATH": "/path/to/your/workspace/gerrit-code-review-mcp",
        "VIRTUAL_ENV": "/path/to/your/workspace/gerrit-code-review-mcp/.venv",
        "PATH": "/path/to/your/workspace/gerrit-code-review-mcp/.venv/bin:/usr/local/bin:/usr/bin:/bin"
      },
      "stdio": true
    }
  }
}

Replace /path/to/your/workspace with your actual workspace path. For example, if your project is in /Users/username/projects/gerrit-code-review-mcp, use that path instead.

Make sure all paths in the configuration point to:

  • Your virtual environment's Python interpreter
  • The project's server.py file
  • The correct working directory
  • The virtual environment's bin directory in the PATH

Implementation Details

The server uses Gerrit REST API to interact with Gerrit, providing:

  • Fast and reliable change information retrieval
  • Secure authentication using HTTP digest auth
  • Support for various Gerrit REST endpoints
  • Clean and maintainable codebase
  • HTTPS encryption for secure communication

Troubleshooting

If you encounter connection issues:

  1. Verify your HTTP password is correctly set
  2. Check GERRIT_HOST setting
  3. Ensure HTTPS access is enabled on Gerrit server
  4. Test connection using curl:
    curl -u "username:http-password" https://your-gerrit-host/a/changes/
    
  5. Verify Gerrit access permissions for your account

License

This project is licensed under the MIT License.

Contributing

We welcome contributions! Please:

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Submit a pull request

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选