Giphy MCP Server
An auto-generated Multi-Agent Conversation Protocol Server that enables interaction with the Giphy API, supporting various transport modes and configurable through environment variables.
README
MCP Server
This project is an MCP (Multi-Agent Conversation Protocol) Server for the given OpenAPI URL - https://api.apis.guru/v2/specs/giphy.com/1.0/openapi.json, auto-generated using AG2's MCP builder.
Prerequisites
- Python 3.9+
- pip and uv
Installation
- Clone the repository:
git clone <repository-url> cd mcp-server - Install dependencies:
The .devcontainer/setup.sh script handles installing dependencies using
pip install -e ".[dev]". If you are not using the dev container, you can run this command manually.Alternatively, you can usepip install -e ".[dev]"uv:uv pip install --editable ".[dev]"
Development
This project uses ruff for linting and formatting, mypy for static type checking, and pytest for testing.
Linting and Formatting
To check for linting issues:
ruff check
To format the code:
ruff format
These commands are also available via the scripts/lint.sh script.
Static Analysis
To run static analysis (mypy, bandit, semgrep):
./scripts/static-analysis.sh
This script is also configured as a pre-commit hook in .pre-commit-config.yaml.
Running Tests
To run tests with coverage:
./scripts/test.sh
This will run pytest and generate a coverage report. For a combined report and cleanup, you can use:
./scripts/test-cov.sh
Pre-commit Hooks
This project uses pre-commit hooks defined in .pre-commit-config.yaml. To install the hooks:
pre-commit install
The hooks will run automatically before each commit.
Running the Server
The MCP server can be started using the mcp_server/main.py script. It supports different transport modes (e.g., stdio, sse).
To start the server (e.g., in stdio mode):
python mcp_server/main.py stdio
The server can be configured using environment variables:
CONFIG_PATH: Path to a JSON configuration file (e.g., mcp_server/mcp_config.json).CONFIG: A JSON string containing the configuration.SECURITY: Environment variables for security parameters (e.g., API keys).
Refer to the if __name__ == "__main__": block in mcp_server/main.py for details on how these are loaded.
The tests/test_mcp_server.py file demonstrates how to start and interact with the server programmatically for testing.
Building and Publishing
This project uses Hatch for building and publishing. To build the project:
hatch build
To publish the project:
hatch publish
These commands are also available via the scripts/publish.sh script.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。
mcp-server-qdrant
这个仓库展示了如何为向量搜索引擎 Qdrant 创建一个 MCP (Managed Control Plane) 服务器的示例。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。