Git Commit Video Walkthrough Generator
Generates narrated video walkthroughs of git commits, staged/unstaged changes, or entire codebases with AI-powered analysis, syntax-highlighted code visualization, and text-to-speech narration.
README
Git Commit Video Walkthrough Generator
An MCP (Model Context Protocol) server that generates narrated video walkthroughs of git commits, staged/unstaged changes, or entire codebases with AI-powered analysis and explanations.
Features
- 🎥 Automatic video generation from git commits, diffs, or codebases
- 🤖 AI-powered code analysis and script generation
- 🗣️ Natural text-to-speech narration using system TTS
- 🎨 Syntax-highlighted code visualization
- 📊 Multiple presentation styles (beginner, technical, overview)
- 🎯 Works with or without MCP sampling support
Installation
Prerequisites
-
FFmpeg: Required for video compilation
- macOS:
brew install ffmpeg - Linux:
apt install ffmpeg - Windows: Download from ffmpeg.org
- macOS:
-
Node.js/Bun: For running the MCP server
- Recommended: Bun 1.0+ (
curl -fsSL https://bun.sh/install | bash) - Or Node.js 20+
- Recommended: Bun 1.0+ (
Build from Source
# Install dependencies
bun install
# Build TypeScript
bun run build
Usage
This tool can be used in two ways, depending on whether your MCP client supports sampling:
Option 1: With MCP Sampling Support (Automatic)
If your MCP client supports the sampling capability, use the generate_walkthrough tool:
{
"tool": "generate_walkthrough",
"arguments": {
"repoPath": "/path/to/repository",
"target": {
"type": "codebase"
},
"style": "technical",
"theme": "dark",
"outputPath": "./walkthrough.mp4"
}
}
Target types:
"codebase"- Analyze entire codebase"commit"- Analyze specific commit (requirescommitHash)"staged"- Analyze staged changes"unstaged"- Analyze unstaged changes
Option 2: Without MCP Sampling Support (Manual)
If your MCP client doesn't support sampling (like Claude Code), use the two-step approach:
Step 1: Generate Analysis and Script
Ask your LLM to analyze the code:
Please analyze this codebase and provide a JSON response with the following structure:
{
"summary": {
"achievement": "What this codebase accomplishes",
"approach": "How it accomplishes it"
},
"files": [
{
"path": "path/to/file.ts",
"status": "added" | "modified" | "deleted",
"explanation": "What this file does",
"impact": "Why it's important"
}
],
"totalStats": {
"additions": 0,
"deletions": 0,
"filesChanged": 5
}
}
Analyze the following project: [project name/path]
Focus on: [specific files or areas to analyze]
Then ask for a script:
Based on this analysis, create a video script with the following JSON structure:
{
"intro": "Introduction text for the video",
"sections": [
{
"title": "Section title",
"narration": "What to say in this section",
"codeSnippet": "optional code to display",
"duration": 5
}
],
"conclusion": "Concluding remarks",
"estimatedDuration": 30
}
Style: technical|beginner|overview
Target audience: [describe your audience]
Analysis:
[paste the analysis JSON you received from the previous step]
Step 2: Generate Video
Call the generate_video_from_script tool with both JSONs:
{
"tool": "generate_video_from_script",
"arguments": {
"analysis": { /* paste analysis JSON */ },
"script": { /* paste script JSON */ },
"style": "technical",
"theme": "dark",
"outputPath": "./walkthrough.mp4"
}
}
See USAGE_WITHOUT_SAMPLING.md for detailed examples.
MCP Server Configuration
Add to your MCP client configuration (e.g., Claude Desktop):
{
"mcpServers": {
"walkthrough": {
"command": "node",
"args": ["/path/to/code-walkthrough-mcp/dist/src/index.js"]
}
}
}
Or with Bun:
{
"mcpServers": {
"walkthrough": {
"command": "bun",
"args": ["run", "/path/to/code-walkthrough-mcp/dist/src/index.js"]
}
}
}
Available Tools
generate_walkthrough
Requires: MCP sampling support
Fully automatic video generation from code analysis to final video.
Parameters:
repoPath(required): Path to git repositorytarget(required): What to analyzetype: "commit" | "staged" | "unstaged" | "codebase"commitHash: Required if type is "commit"
style: "beginner" | "technical" | "overview" (default: "technical")theme: "dark" | "light" | "github" (default: "dark")outputPath: Where to save video (default: "./walkthrough.mp4")
generate_video_from_script
Requires: No special capabilities (works with any MCP client)
Generate video from pre-provided analysis and script.
Parameters:
analysis(required): Analysis JSON objectscript(required): Script JSON objectstyle: "beginner" | "technical" | "overview" (default: "technical")theme: "dark" | "light" | "github" (default: "dark")outputPath: Where to save video (default: "./walkthrough.mp4")
Project Structure
.
├── src/
│ ├── index.ts # MCP server implementation
│ ├── stages/
│ │ ├── analysis.ts # Code analysis via sampling
│ │ ├── script.ts # Script generation via sampling
│ │ └── video.ts # Video generation pipeline
│ ├── extractors/
│ │ ├── commit.ts # Extract commit info
│ │ ├── staged.ts # Extract staged changes
│ │ ├── unstaged.ts # Extract unstaged changes
│ │ └── codebase.ts # Extract codebase info
│ ├── types/
│ │ ├── state.ts # Type definitions
│ │ └── analysis.ts # Analysis types
│ └── utils/
│ └── prompts.ts # LLM prompts for analysis
├── dist/ # Compiled JavaScript
└── video_output/ # Generated videos (default)
Development
# Watch mode (auto-rebuild on changes)
bun run watch
# Run MCP server
bun run dev
# Build TypeScript
bun run build
Architecture
This MCP server implements an inverted conversation flow using MCP's sampling capability:
- Client calls
generate_walkthroughtool - Server extracts code/commits from git
- Server calls back to client via sampling: "analyze this code"
- Client processes with LLM, returns analysis
- Server calls back again: "generate script from analysis"
- Client generates script, returns it
- Server creates video frames, audio, and compiles final video
For clients without sampling, the generate_video_from_script tool allows manual completion of steps 3-5.
Video Generation Pipeline
- Analysis: Code is analyzed to understand what it does
- Script: A narrated script is generated based on analysis
- Frames: HTML frames are created with syntax-highlighted code
- Screenshots: Puppeteer captures PNG screenshots of each frame
- Audio: Text-to-speech generates narration audio
- Compilation: FFmpeg combines frames and audio into MP4
Output
The generated video includes:
- Introduction with project overview
- Section-by-section code walkthrough
- Syntax-highlighted code snippets
- Professional narration
- Conclusion summary
Example output structure:
walkthrough.mp4 # Final video
temp_frames/ # Temporary frame images (auto-deleted)
temp_audio.mp3 # Temporary audio (auto-deleted)
Troubleshooting
"Method not found -32601" Error
Your MCP client doesn't support sampling. Use the generate_video_from_script tool instead (see Option 2 above).
FFmpeg Not Found
Install FFmpeg:
- macOS:
brew install ffmpeg - Linux:
apt install ffmpeg - Windows: Download from ffmpeg.org and add to PATH
No Audio in Video
The tool uses system text-to-speech. If TTS fails, video will be generated without audio (silent).
Puppeteer Issues
Puppeteer downloads Chromium automatically. If it fails:
# Reinstall dependencies
rm -rf node_modules
bun install
License
MIT
Contributing
Contributions welcome! Please ensure:
- TypeScript code compiles without errors
- Follow existing code style
- Update documentation for new features
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。